

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 1

Floorplan Manager
for Web Dynpro ABAP
- Developer's Guide -

S AP NetWeaver 7 .0
Enhancement Package 3

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 2

Copyright

© Copyright 2011 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the
express permission of SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components
of other software vendors.

Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z,
System z10, System z9, z10, z9, iSeries, pSeries, xSeries, zSeries, eServer, z/VM, z/OS, i5/OS, S/390,
OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server, PowerVM, Power Architecture, POWER6+,
POWER6, POWER5+, POWER5, POWER, OpenPower, PowerPC, BatchPipes, BladeCenter, System
Storage, GPFS, HACMP, RETAIN, DB2 Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX,
Intelligent Miner, WebSphere, Netfinity, Tivoli and Informix are trademarks or registered trademarks of IBM
Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or
registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web
Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented
and implemented by Netscape.

SAP, R/3, xApps, xApp, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign, and other
SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world. All other product and
service names mentioned are the trademarks of their respective companies. Data contained in this document
serves informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its
affiliated companies ("SAP Group") for informational purposes only, without representation or warranty of any
kind, and SAP Group shall not be liable for errors or omissions with respect to the materials. The only
warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as
constituting an additional warranty.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 3

Icons in Body Text

Icon Meaning

 Caution

 Example

 Note

 Recommendation

 Syntax

Additional icons are used in SAP Library documentation to help you identify different types of information at a

glance. For more information, see Help on Help General Information Classes and Information Classes for
Business Information Warehouse on the first page of any version of SAP Library.

Typographic Conventions

Type Style Description

Example text Words or characters quoted from the screen. These include field
names, screen titles, pushbuttons labels, menu names, menu paths,
and menu options.

Cross-references to other documentation.

Example text Emphasized words or phrases in body text, graphic titles,
and table titles.

EXAMPLE TEXT Technical names of system objects. These include report
names, program names, transaction codes, table names,
and key concepts of a programming language when they
are surrounded by body text, for example, SELECT and
INCLUDE.

Example text Output on the screen. This includes file and directory
names and their paths, messages, names of variables
and parameters, source text, and names of installation,
upgrade and database tools.

Example text Exact user entry. These are words or characters that you
enter in the system exactly as they appear in the
documentation.

<Example text> Variable user entry. Angle brackets indicate that you
replace these words and characters with appropriate
entries to make entries in the system.

EXAMPLE TEXT Keys on the keyboard, for example, F2 or ENTER.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 4

Table of Contents
Copyright.. 2

Icons in Body Text ... 3

Typographic Conventions .. 3

Floorplan Manager ... 12

Getting Started ... 12

User Interface Building Blocks ... 13

IF_FPM_UI_BUILDING_BLOCK Interface .. 13

Creating a Simple FPM Application ... 15

Creating a Web Dynpro Component .. 15
Adding Views to your Web Dynpro Component ... 16

Creating a Web Dynpro Application ... 16

Using Application Parameters .. 17

Creating an Application Configuration with the FPM Configuration Editor .. 18
Configuring FPM_GAF_COMPONENT ... 18

Configuring FPM_IDR_COMPONENT ... 19

Testing your FPM Application .. 19

FPM Application Creation Tool .. 20

Starting the ACT ... 20

Creating a New Application using the ACT .. 20

FLUID (Flexible UI Designer)... 21

Launching FLUID in Different Modes ... 22

Structure and Layout of FLUID .. 22

Changing the Layout of FLUID .. 27

Working with FLUID ... 28
Adding an Existing UIBB to your Application.. 28

Changing the Title of a Step inside an Application based on the GAF Floorplan ... 28

Editing the Form Component inside an Application ... 29

Adding a New Button to the Toolbar in a Floorplan Component of an Application ... 29

Moving back to a Floorplan Component from a GUIBB Component .. 29

Limitations .. 30

Wire Model ... 30

IF_FPM_UIBB_MODEL Interface .. 30

IF_FPM_FEEDER_MODEL Interface .. 30

FPM on BOL .. 33

Creating a GUIBB on BOL ... 33

Creating an FPM Application on BOL .. 34

Design Time with the FPM Configuration Editor.. 35

Floorplan Instances in the FPM Configuration Editor .. 35
OIF Instance .. 36

GAF Instance ... 36

OVP Instance ... 37

Adding and Activating Sub-Steps for GAF Applications .. 37

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 5

FPM Toolbar .. 37
Differences between an OIF and a GAF Toolbar ... 38

Adding Elements to a Toolbar .. 38

Adjusting the Toolbar Dynamically ... 38

Toolbar Buttons .. 39

Toolbar Button Events ... 40

IF_FPM_CNR_GAF Interface .. 41
Accessing the API for a GAF application: .. 41

GAF Specific Parameters... 42

IF_FPM_CNR_OIF Interface ... 44
Accessing the API for an OIF application: .. 44

OIF Specific Parameters .. 45

FPM Complete Preview ... 46

FPM Identification Region (IDR) .. 46
Adjusting the IDR Dynamically ... 47

Adding a Link to the FPM Configuration Editor in the IDR ... 47

IF_FPM_IDR Interface ... 47

Providing a Link to the FPM Configuration Editor in the IDR ... 48

Quick Help .. 49
Creating Quick Help ... 49

Procedure .. 49

Variants .. 50
Configuring Variant Selection ... 50

Initial Screen .. 51
Skipping the Initial Screen.. 51

Confirmation Screen .. 52

FPM Event Loop .. 53
Raising Standard Events ... 53

Triggering the FPM Event Loop ... 53

Triggering Application-Specific Events ... 54

Reacting to Framework Events .. 54

Key Web Dynpro Methods ... 55

Different Categories of Web Dynpro Interfaces .. 55

Overview Page Floorplan (OVP) ... 56

Structure of an OVP ... 56
Page .. 56

Section ... 57

UIBBs / GUIBBs ... 57

Stacking ... 58

Page Master ... 58

Personalization ... 60
Personalization Editor .. 61

Toolbars ... 63

External Navigation Menus .. 63

Default Actions ... 64

Edit / Display Mode .. 65

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 6

Processing Mode for Collapsed UIBBs ('Lazy Load') .. 66

Technical UIBBs ... 67

Initial Search Page & External Navigation ... 67

OVP-Related FPM Events for Navigation .. 71

Dynamic Changes at Runtime ... 73
OVP CNR API .. 74

Application Configuration Controller API .. 75

Setting a Default ALV View for a Freestyle UIBB .. 76

Design Time Settings in the FPM Configuration Editor ... 77

Rendering the ALV Views during Runtime... 77

FPM Dialog Boxes ... 78

Structure ... 78

Features ... 79

Creating and Configuring an FPM Dialog Box ... 80

Triggering Dialog Boxes from a Toolbar Button ... 81

Opening and Closing FPM Dialog Boxes... 81

Event Processing in Dialog Boxes ... 82

The MV_IS_DIALOG_MODE Attribute .. 82

Sample Coding to Call A Dialog Box ... 82
Opening a Dialog Box using Direct API ... 82

Opening a Dialog Box by Raising an FPM Event ... 82

Message Manager for FPM Dialog Boxes ... 83

Error Page of an FPM Dialog Box .. 84

Enabling/Disabling Dialog Box Buttons at Runtime ... 84

Sample Code to Set the Status of the Dialog Box button. ... 84

FAQs on FPM Dialog Boxes .. 84

Generic User Interface Building Block (GUIBB) .. 85

Feeder Classes .. 85
Structure .. 85

Features ... 86

Context Menus in GUIBBs ... 86
Methods of IF_FPM_GUIBB_CTXT_MENU Interface .. 86

Form Component (GUIBB FORM GL2) ... 88
Structure .. 88

IF_FPM_GUIBB_FORM Interface .. 89

Group Layout in a Form ... 93

Form Component (GUIBB FORM) ... 93
Structure .. 93

IF_FPM_GUIBB_FORM Interface .. 94

Using the CHECKBOX_GROUP Display Type in a Form .. 97

List ATS Component (GUIBB List ATS) ... 98
Feeder Class .. 98

Configuration .. 100

Data Exchange .. 100

Actions ... 102

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 7

Features ... 104

Advanced Features .. 105

Changes to Elements from 'Old' List Component (GUIBB List) .. 107

List Component (GUIBB LIST) ... 108
Structure .. 108

IF_FPM_GUIBB_LIST_PAGING Interface ... 113

Additional Information on the List Component ... 115

FPM Events and the List Component .. 116

Rendering GUIBB List as ALV ... 116

Hierarchical List Component (GUIBB TREE)... 117
Structure .. 117

IF_FPM_GUIBB_TREE Interface ... 119

Additional Information on the Hierarchical List Component ... 124

FPM Events and the Hierarchical List Component ... 124

Search Component (GUIBB SEARCH) ... 125
Structure .. 126

Integration .. 127

IF_FPM_GUIBB_SEARCH Interface ... 127

Enter, Reset, and Clear Buttons .. 133

Result List .. 133

Exclude Criteria .. 135

Dependent Searches ... 135

Launchpad Component (GUIBB LAUNCHPAD) .. 135
Structure .. 135

IF_FPM_GUIBB_LAUNCHPAD Interface .. 138

Tabbed Component (GUIBB TABBED COMPONENT) ... 139
Structure .. 140

Changing the Tabbed Component Dynamically at Runtime .. 140

POWL Component (GUIBB POWL) ... 141
Pre-requisites ... 141

The POWL Component in FPM ... 142

Configuring a POWL Component in FPM .. 142

The POWL Component at Runtime ... 145

Actions from Detail UIBB.. 146

Navigation to Error Page .. 146

Composite Component (GUIBB Composite) ... 147
Structure .. 147

Editing the Composite Component .. 147

Changing the Composite UIBB dynamically at Runtime .. 147

Analytical Components .. 148

Analytics List Component... 149
Component Configuration .. 149

Tree Component with Analytics Feeder Class ... 151

Search Component with Analytics Feeder Class ... 153

Chart Component with Analytics Feeder Class ... 154
Structure .. 155

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 8

IF_BS_ANLY_GUIBB_CHART Interface ... 156

Chart Configuration for the Floorplan Manager .. 159

Chart Appearance .. 160

Chart Customizing File ... 161

Adding a Chart Component.. 161

FPM Events and the Chart Component ... 162

Application-Specific Analytics UIBBs ... 163
Analytical Application Programming Interface (API) ... 163

FPM Event Loop for Analytics and Planning.. 164

REUSE UIBB (RUIBB) ... 166

Attachment RUIBB ... 166
RUIBB Interface ... 166

Adding the Attachment RUIBB in FLUID .. 170

Attachment RUIBB Features .. 171

Notes RUIBB .. 176
RUIBB Interface ... 176

Adding the Notes RUIBB in FLUID .. 180

Notes RUIBB Features .. 181

Value/Input Helps for Generic UIBBs (GUIBBs) .. 184

Assignments in the Field Description ... 185
DDIC Value Help .. 185

OVS ... 185

Freestyle Value Help .. 185

Fixed Values .. 186

Drag-and-Dropping Data between UIBBs ... 186

Enabling Drag-and-Drop .. 186

Configuring Drag-and-Drop .. 187

Events and Event Parameters ... 188

Class, Methods and Parameters of Drag-and-Drop .. 188

Event Processing during Drag-and-Drop ... 190

Handling Drop in UIBBs ... 190

Dynamically Changing Drag-and-Drop .. 190

Context Based Adaptations (CBA) .. 190

Basic Concepts .. 192
Adaptation Schema .. 192

Adaptation Dimension .. 192

Adaptation Context .. 192

Inheritance of Component Configurations .. 192

Step-By-Step Example ... 192
Adding an Attachment UIBB for Managers .. 192

Adapting the Address Layout ... 197

Avoiding Unnecessary FPM Events ... 201

Setting the Adaptation Context Locally .. 201

Hiding of UIBBs .. 203

Navigation with Launchpads .. 204

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 9

Including a Launchpad in the User Interface ... 205

General Settings of Launchpads .. 206

Transporting a Launchpad ... 206

IF_FPM_NAVIGATION API ... 206

Integration: Navigation in the Event Loop .. 210

IF_FPM_NAVIGATE_TO API .. 211

Restarting a WD ABAP Application ... 212

Extracting Launchpad Content and Launch Service .. 213

Suspend and Resume ... 213

Suspending via Static Launchpad Customizing for URL Application Category 214

Suspending via Static Launchpad Customizing for Web Dynpro ABAP or Web Dynpro Java Application 214

Suspending via Launchpad API ... 214

Resuming a Suspended Application .. 215

Handling Dialog Boxes .. 215

Triggering a Data-Loss Dialog Box in the FPM Event Loop .. 216

Handling Application-Specific Dialog Boxes .. 216

Deferring Current Event Processing .. 216

Registering a Dialog Box.. 216

Resuming the Event ... 218

IF_FPM_WORK_PROTECTION Interface .. 218

FPM Message Management.. 219

Using the FPM Message Manager .. 220

IF_FPM_MESSAGE_MANAGER Interface ... 221

Methods for Reporting Messages .. 221

Mandatory Parameters... 227

Methods for Raising Exception Messages ... 227

Method for Clearing Messages .. 228

Handling of FPM Message Manager in Non-FPM Dialog Boxes ... 229

Message Manager – ON_NAVIGATE Event ... 229

FPM Message Manager FAQ .. 230

Message Mapper ... 231

Enabling Message Mapper .. 231

Message Mapping Fields ... 231
Message Context ... 231

Message Categories .. 231

Message Namespace .. 232

Message Source .. 232

Generalization .. 232

Changing Message Types ... 235

Hiding Messages .. 235

Hiding Messages and Generalization .. 235

Logging Messages ... 235

Generalization .. 236

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 10

Mapping Message Variables .. 237

API Changes for Message Mapping .. 238

Customizing Tables for Message Mapper ... 239

Maintenance Views for Message Mapper .. 240

FPM Error Page ... 240

Structure ... 241

Features ... 241

Handling of Transactions ... 243

Using the Transaction Interface ... 243

Transaction Interface FAQ ... 244

IF_FPM_TRANSACTION Interface ... 244

Resource Management ... 246

Releasing a Component... 246

Settings for Transient Behaviour .. 248

Setting the Transient Flag .. 249

Using IF_FPM_RESOURCE_MANAGER to Veto Release Decision .. 249

Using an FPM Application Controller ... 250

Implementing the Application Controller .. 250

IF_FPM_APP_CONTROLLER Interface ... 250

Using an Application-Specific Configuration Controller ... 251

Implementing an AppCC Component .. 251

Methods ... 252

Features ... 252

Implementing an AppCC Class .. 254

Sharing Data between UIBBs from Different Components ... 254

Using a Shared Data Component .. 254

Other Options for Sharing Data ... 255

Determining Navigation State Information at Runtime ... 255

Embedding an FPM Application .. 256

Constraints ... 257

FPM CHIP Integration .. 258

Structure of the UCW ... 258

Multi-Instantiability .. 258

Communication between FPM CHIPs ... 259

Creating a CHIP for a Single UIBB .. 259

Appendix I: Authorization Profiles .. 261

Appendix II: Building FPM Applications on BOL with NW703/WEBCUIF702 261

GUIBB Configuration with Generic BOL Feeder Class .. 261
Search GUIBB ... 261

Form GUIBB .. 262

List GUIBB ... 264

Tree GUIBB ... 265

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 11

Floorplan Configuration .. 266
BOL-Specific Settings .. 266

Wiring ... 267

OVP Application with Ex-place Navigation ... 269

Break-out Scenarios ... 272
Feeder Class Redefinition .. 272

Connector Class Redefinition ... 276

Transaction-Handler Class Redefinition ... 276

Freestyle UIBBs ... 276

Application Controllers ... 279

Special Topics .. 280
FPM BOL CHIP Integration .. 280

Appendix III: Guidelines for Edit Scenarios for List ATS UIBB .. 281

Objectives .. 281

Prerequisites .. 281

Change Log .. 282

Application Scenarios ... 283

Extension of Feeder Interface .. 283

Unique Key Mode ... 284
To-Dos for Application ... 284

Moving of Rows ... 285

Programming Examples ... 285

Stable Line Order Mode ... 287
To-Dos for Application ... 287

Moving of Rows ... 288

Programming Examples ... 289

Own Delta Handling ... 292
To-Dos for Application ... 292

No Delta Handling .. 292
To-Dos for Application ... 292

Appendix IV: Multi-Value Fields ... 293

How to Use a Multi-Value Field .. 293

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 12

Floorplan Manager

Floorplan Manager (FPM) is a Web Dynpro ABAP application that provides a framework for developing new
Web Dynpro ABAP application interfaces consistent with SAP UI guidelines. FPM currently supports you in
creating and configuring user interfaces with the following floorplans:

 Object Instance Floorplan (OIF)

 Overview Page Floorplan (OVP)

 Guided Activity Floorplan (GAF)

 Quick Activity Floorplan (QAF)

The following floorplan areas can be configured using the FPM configuration editor:

 Identification Region (IDR)

 Message Region (MR)

 Context Navigation Region (CNR)

 Roadmap Element

Floorplan content areas must also be UI guideline compliant and FPM provides pre-defined UI building
blocks (UIBBs) to support you in creating and configuring application-specific views (freestyle areas). The
common UI patterns such as form, list, hierarchical list and tabbed area can be configured using the FPM
configuration editor.

FPM includes APIs for common functions such as navigation, data-loss handling, messaging, and
personalization.

FPM allows for modification-free customer adaptations.

System Requirements

This document outlines the features of Floorplan Manager as of release SAP NW 7.0 Enhancement Package
2 and SAP NW 7.1 Enhancement Package 2. Where it is necessary, the system requirements are mentioned
at feature level.

Getting Started

This section provides you with an overview of an FPM application and the steps required by you to create a
simple Hello World example application.

Once you have created your application, you are introduced to the FPM Configuration Editor, FLUID
(Flexible UI Designer), which allows you to edit your application and to configure it at design time.

The FPM event loop and it various activities are explained to you, and finally you are presented with time-
saving design templates, allowing you to create guideline compliant user-interfaces.

Assumptions

Knowledge of ABAP OO and Web Dynpro for ABAP is assumed.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 13

User Interface Building Blocks

From an FPM perspective, UIBBs are the interface views (Web Dynpro ABAP windows) that are provided by
the external application and not by FPM itself.

In order that the FPM framework recognizes a UIBB, the Web Dynpro component that provides the UIBB

must implement the IF_FPM_UI_BUILDING_BLOCK Web Dynpro interface. The

IF_FPM_UI_BUILDING_BLOCK interface ensures that the Web Dynpro application can take part in the

FPM event loop.

For more information, see IF_FPM_BUILDING_BLOCK INTERFACE.

IF_FPM_UI_BUILDING_BLOCK Interface

This Web Dynpro interface ensures that a Web Dynpro application and its UIBBs can take part in the FPM
Event Loop.

The methods of this interface are described in the following table:

Method Name Method Description

FLUSH This is the first method called after the FPM event loop has been started.

In this method, the UIBB needs to transport all modified data from the
views to other components the UIBB wants to communicate with later
on.

Normally this data transport is done automatically using Web Dynpro
context mapping. Therefore, you will only need to do a specific
implementation of this method if you are not using these automatic
mechanisms.

NEEDS_CONFIRMATION With this method, the UIBB requests that the subsequent event
processing is stopped and asks the user for confirmation by way of a
dialog box. Depending on the action the user takes in the dialog box, the
event loop is continued or cancelled. For more details, refer to chapter
'Triggering a Data Loss Dialog Box'.

PROCESS_EVENT Within this method the UIBB completes the following tasks:

 Checks for local consistency (validation, missing data,
etc).

 Perform the actual event processing.

The local check is needed to inform the user of potential input errors as
soon as possible. In accordance with UX guidelines, checks are to be
performed continually (as long as they are not too performance-
intensive). For example, when switching from one view to another view
in an OIF application, the view (UIBB) which is moved away from must
check for local consistency.

However, this does not exempt the application from performing a
complete check (including performance critical checks) before saving.
This must be handled in the method
IF_FPM_TRANSACTION_CHECK_BEFORE_SAVE.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 14

Besides the consistency check this method contains the actual
processing of the event. For this, the current event can be identified

through the attributes MV_EVENT_ID and MO_EVENT_DATA on the

passed on event instance io_event. Depending on whether the event is

processed successfully or not, the exporting parameter EV_RETURN

must be filled with either IF_FPM_CONSTANTS~GC_EVENT_RESULT-OK

or IF_FPM_CONSTANTS~GC_EVENT_RESULT-FAILED.

A typical implementation of PROCESS_EVENT is shown below:

1. IF io_event->mv_event_is_validating =

abap_true.

2. Do local checks and report messages if needed
3. ENDIF
4. CASE io_event->mv_event_id.
5. WHEN XYZ
6. Handle event and fill EV_RETURN accordingly

with a value from

IF_FPM_CONSTANTS~GC_EVENT_RESULT

7. ENDCASE.

If the event processing requires further user interaction (for example
asking for further data in a dialog box), the event processing can be

deferred by returning EV_RETURN =

IF_FPM_CONSTANTS~GC_EVENT_RESULT-DEFER.

AFTER_FAILED_EVENT This method is called by the FPM if an event could not be processed
successfully. In this case the UIBB needs to ensure that its UI reverts to
the state before the user interaction occurred.

Selecting an option in a „Lead‟ field in a table triggers the display of the
details of a new line in another UIBB. The event could fail if the UIBB for
the details contains unsaved data for the previously selected table line.
As the detail form still contains the details of the original table line (after
the failed event), the Lead selection must be reverted to the original table
line too.

If the PROCESS_EVENT method of the current UIBB has been processed

successfully, but the event processing failed due to a problem in another
UIBB, the actual event processing needs to be reverted as well. The

parameter IV_REVERT indicates this situation.

PROCESS_BEFORE_OUTPUT The last method to be called on the UIBB is the

PROCESS_BEFORE_OUTPUT. The data to be displayed is read from the

model.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 15

Creating a Simple FPM Application

The following pages explain how to create a very simple, Hello World, FPM application based on a Guided
Activity Floorplan (GAF). The application will contain 2 road steps.

This process is performed in the Web Dynpro ABAP Workbench (transaction SE80).

A more detailed explanation of FLUID and how to use it follows thereafter.

An FPM application is composed of a number of different Web Dynpro components (most of which are
instantiated dynamically at runtime). However, the following two components are usually present:

 a floorplan-specific component (FPM_GAF_COMPONENT or FPM_OIF_COMPONENT)

 a component for the Header Area (FPM_IDR_COMPONENT) - not present in OVP
floorplan configurations

In simple terms, the configuration of an FPM application is the configuration of these two components.

1. You construct an FPM application by completing the following steps:
2. Create a Web Dynpro Component with the required UIBBs and implement the Web

Dynpro interface IF_FPM_UI_BUILDING_BLOCK.
3. Create a Web Dynpro Application and specify parameters according to which

floorplan instance you are using.
4. Using the FPM configuration editor, FLUID (Flexible UI Designer), create a

configuration for the application.
5. Test your application.

Creating a Web Dynpro Component

1. Open the Web Dynpro ABAP Workbench.
2. In the Object Navigator, right-click the Web Dynpro node and choose Create

Web Dynpro Component (Interface) .
3. In the Web Dynpro: Component/Create Interface dialog box, enter a name, description and

window name (the window name must be different from the view name).
4. Save your entry.
5. In the Attributes section of the Create Object Entry Directory dialog box, enter the relevant

package.
6. Save your entry. The preview displays your new (inactive) Web Dynpro Component.
7. Choose the Implemented Interfaces tab.
8. In the first row of the Name column, enter the FPM interface

IF_FPM_UI_BUILDING_BLOCK and save your entry.
9. In the Action column, choose Reimplement. The icon in the Implementation State column

indicates that your component is completely implemented.
10. Choose Activate in the toolbar.
11. In the Activation dialog box, select all associated, inactive components and choose

OK.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 16

Adding Views to your Web Dynpro Component

When you create a component, Web Dynpro automatically creates and assigns a window and a view to it.
You may add further windows and views. It is recommended that you add only one view to one window.

1. In the Object Navigator, find your new Web Dynpro component and expand its
node.

a. Ensure you are in edit mode.
b. Expand the Views node and double-click the existing view. The view appears

in the preview.
c. In the Layout tab, right-click the ROOTUIELEMENT container and choose Add

Element.
d. In the Create Element dialog box, add your own ID and select the type of UI

element you want to add.
e. In the Properties Section, enter Hello in the Text property. Choose Save and

your text appears in the preview.
2. Choose Activate.

a. In the Activation dialog box, select all associated, inactive components and
choose OK.

3. Add a second view:
a. Right-click the View node and choose Create. Give your view a name and

choose OK.

b. Add a caption element and enter the text Welcome to the world of FPM.
4. Add this view to a new Window (which you create now):

a. Right-click the Windows node and choose Create.
b. In the Web Dynpro: Create Window dialog box, enter a Window name and choose

OK.
c. The preview automatically displays the Window tab. In the Window Structure

column, there is a node with your new Window‟s name.
d. Drag your new view from the Object Navigator onto this node so that it is

included in the Window structure (expand the node to see the new listed
below it).

e. Save and activate your new window.

You have now created a Web Dynpro Component, implemented the required

IF_FPM_UI_BUILDING_BLOCK interface and configured two views (in two separate windows) for your

component.

Creating a Web Dynpro Application

Prerequisites

You have already created a Web Dynpro component with two views.

Procedure

1. In the Object Navigator, right-click the Web Dynpro Applications folder and choose Create.
2. In the Create Web Dynpro Application dialog box, enter a name for your application and

choose OK. Your new Web Dynpro Application appears in the preview.
3. Enter the following information to create a GAF application:

a. Component: FPM_GAF_COMPONENT

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 17

b. Interface View: FPM_WINDOW

c. Plug Name: Default
4. Save your entries.
5. In the Create Object Directory Entry dialog box, enter the relevant package and choose

OK.

Result

You have created a Web Dynpro application based on an OIF or GAF floorplan instance.

If you want to add parameters to your application, see Using Application Parameters.

Using Application Parameters

Application parameters are defined at Web Dynpro Application level.

To define your application parameters, proceed as follows:

1. In the Web Dynpro Object Navigator, double-click your Web Dynpro application.

2. Choose Parameters. You can add arbitrary parameters as application-specific
attributes to your Web Dynpro application. During runtime, these parameters are

exposed via IF_FPM->MO_APP_PARAMETER. MO_APP_PARAMETER stores an instance of

IF_FPM_PARAMETER. With this interface you are able to retrieve the parameters.

Note that there is no concept of mandatory or optional parameters. For security reasons, you must never
trust parameters passed by a different application. Always complete a proper validation before you use
application parameters.

There are other FPM-specific parameters which you can add to your application. These are detailed in the
table below.

Parameter Parameter Description

FPM_SHOW_MESSAGE_LOG You can turn on a log history of the messages for a particular
application. When the message log is turned on, all the previously
reported messages are displayed.

FPM_MAXIMUM_MESSAGE_SIZE When a message is created in the application, the message area
displays as many messages as possible. As soon as the visible
number of messages in the message area exceeds the configured
message size, a scroll bar will appear in the message area, allowing
the user to read all messages. The maximum size of the message is
set via configuration.

FPM_HIDE_CLOSE With this parameter, you can hide the Close button on the FPM
toolbar for your application.

There are also predefined Web Dynpro parameters which can be chosen using the value help. The
parameter WDENABLEUIELEMENTSHIDE controls whether users can hide UI elements via a right mouse-

click („implicit personalization“). The implicit default is TRUE. However, according to UI guidelines, this option

should be disabled. To do this, this parameter should be added and the value should be left blank.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 18

Alternatively, you may uncheck the corresponding checkbox in the application parameters block of the
application configuration.

Creating an Application Configuration with the FPM Configuration Editor

Prerequisites

You have already created a Web Dynpro component with two views and have created a Web Dynpro

application implementing the FPM_GAF_COMPONENT interface.

Procedure

1. In the Object Navigator, right-click your new Web Dynpro Application and choose
Create/Change Configuration. The Editor for the Web Dynpro ABAP Application Configuration
screen opens in a browser window.

2. Enter a name for your application‟s configuration in the Configuration ID field. Note
that configuration names are global; you may not use the same configuration name
for different applications.

3. Choose New. In the Create Configuration dialog box, enter the relevant Package and
choose OK.

4. The application configuration window displays your new configuration. Within your
configuration are the following two components:

 FPM_GAF_COMPONENT
 FPM_IDR_COMPONENT

5. You will create configurations for both of these components. Select the individual

component rows and choose the Assign Configuration Name button to enter names for
both of the components. The names you enter are displayed as links.

6. Choose one of the links. The Editor for the Web Dynpro ABAP Application Configuration
screen appears.

7. Choose New to create the new component configuration. The FPM configuration
editor, FLUID, is displayed. You can now configure this component.

Note that for a simple application, you require only one variant, one main view and one subview. The FPM
configuration editor automatically provides these entities (with default IDs and names).

Complete the configuration by performing the following steps below.

Configuring FPM_GAF_COMPONENT

1. The Guided Activity Schema displays 1 main step containing 1 UIBB placeholder
(expand the row to see this if it is not immediately visible). There are also two
buttons, Previous and Next, which the FPM automatically displays in the toolbar for
you.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 19

2. To add the second step, choose Add Main Step in the toolbar.

3. Choose the Attributes button on the main page toolbar to display the Attributes panel.

4. Choose the row containing the first UIBB placeholder to display its attributes.

5. Set the following attributes to the first window (with accompanying view) of your
Web Dynpro component (containing the text „Hello’):

 Component (use the input help and search function to find your component).

 Window Name (once you have entered the component name, the input help
displays the list of views for that component).

6. Set the attributes of the second UIBB placeholder so those of the second window

(with accompanying view) of your Web Dynpro component.

7. Choose Save.

You have now added your component views to the application. You are now ready to configure the IDR
component of your application‟s configuration.

Configuring FPM_IDR_COMPONENT

Once you have created a configuration for your GAF component, you are then ready to create a
configuration for the IDR component.

1. Return to the application hierarchy which displays both component configurations of
your application configuration. You can do this in the following ways:

o Click the link in the breadcrumb (just above the General Settings panel in the

work area)

o Open the ABAP Workbench (transaction SE80), locate your application
configuration and choose Start Configurator. In the Editor for the Web Dynpro ABAP

Application Configuration choose Continue in Change Mode.

2. Choose the link for the IDR component. FLUID opens and displays the attributes for
the element IDR Basic.

3. In the Attributes panel enter an application title and choose Save.

Result

You have now created your first FPM application configuration. You can now test your FPM application.

Testing your FPM Application

Procedure

In the main page toolbar, choose Additional Functions and Test.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 20

A new browser window opens displaying the text Hello for the first step in the GAF roadmap. The title of the
application (which you entered in the IDR component) should also be visible.

Choose the second step in the roadmap to display Welcome to the World of FPM.

FPM Application Creation Tool

The FPM Application Creation Tool (ACT) significantly reduces the effort involved in creating a new FPM
application.

The tool itself is a WD application, provided by FPM, which allows application developers to create FPM
applications and their corresponding configurations for all three available floorplans (OIF, GAF, and OVP).

The ACT also allows users to create applications for adaptable FPM components.

Starting the ACT

1. Open the ABAP Workbench (transaction SE80) and open the APB_FPM_CONF package.
2. Navigate to the Web Dynpro -> Web Dynpro Applications folder in the hierarchy and

choose the FPM_CFG_BO_MODEL_ACT WD application.
3. Choose Test from the context menu.

The system opens a new browser displaying the ACT.

Creating a New Application using the ACT

To create an FPM application, complete the following steps:

1. Enter the following information:

 Enter the name of an existing WD application or enter a name for a new
application.

 Description (optional)

2. Choose Apply Namespace in the toolbar to automatically apply a namespace to the
WD application and the corresponding configurations.

3. (Optional) To create the application as an adaptable component, select the Create

Adaptable Configuration checkbox. Enter an adaptation schema from the dropdown list.
FPM automatically proposes a name for the adaptation configuration.

4. Choose a floorplan from the Select Floorplan dropdown list. FPM proposes names for
the following components in the Proposed Configuration Names table:

 Application Configuration

 Floorplan (Component) Configuration

 Header (IDR) Configuration (for OIF and GAF floorplans only)

5. (Optional) You can edit the configuration names proposed by FPM and enter
descriptions for the configurations.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 21

6. Choose the Next button on the main toolbar and enter the package and transport
details.

7. Choose Save on the main toolbar. The ACT creates the new FPM application and
component configurations and displays the following links in the browser:

 Launch Configuration Editor

 Test Application

The ACT creates only the components and layout of an application; it does not create the code for it.
If you created your application without choosing an existing WD component, your application
appears empty at runtime (except for the icons on the FPM toolbar).

8. Choose one of the following links to continue:

a. Launch Configuration Editor
Choose this link to edit the component or application configurations. This link
displays the Hierarchy Browser which displays all the individual component
configurations which you have just created.

b. Test Application

Choose this link to execute the newly created FPM application.

You can configure the application configuration at a later date in the following ways:

 Open the ABAP Workbench (transaction SE80) and navigate to the relevant WD
application folder. Choose the application and choose the Start Configurator

button on the toolbar. This opens the application in edit mode using the FPM
configuration editor, FLUID.

 Run the application and choose the Configure Page icon on the toolbar.

FLUID (Flexible UI Designer)

FLUID is the configuration editor for FPM application configurations and their individual components. It
replaces all previous individual FPM configuration editors.

You view or edit your application configurations and their components in design mode using FLUID.

You use it to enhance the application user interfaces and fit them to your business needs.

Note that any properties that you set in FLUID take precedence over settings that have been made in
relevant feeder classes.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 22

Launching FLUID in Different Modes

You can launch FLUID in the following ways:

 In Administrator Mode
From the application UI at runtime, use the links Customize Page (to access the
floorplan component) and Show Customizable Areas (to access the GUIBB component).

Changes you make to a configuration in this mode are made on the Customizing
level. FLUID displays a colored bar above the title bar of your configuration to
indicate that you are working on the customizing level.

When you choose either of the buttons mentioned above, and no Customizing of a
configuration exists, the system displays a Customizing dialog box for you to create
one.

 In Expert (Developer) Mode
From the application UI at runtime, use the links Configure Page (to access the
floorplan component) and Show Configurable Areas (to access the GUIBB component).

Changes you make to a configuration in this mode are made on the Configuration
level.

Structure and Layout of FLUID

The screenshot below shows the general layout of FLUID layout:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 23

Title Bar

This displays the name of the component configuration and the active screen or page within it.

Page Toolbar

As well as switching between editing and display modes, this toolbar provides you with the following buttons:

 Check (makes consistency checks)

 Repositories (controls the display of the Repositories panel)

 Navigation (controls the display of the Navigation panel)

 Attributes (controls the display of the Attributes panel)

 Additional Functions:
o Deep-Copy (copies application configurations and their individual component

configurations)
o New Window
o Show Properties (such as application author)
o Test (displays the application at runtime)
o Enhance (for creating modification-free enhancements)
o Reset (for a complete reset of customizing changes)

Message Area

Message Area Page Toolbar
Breadcrumb

Navigation

And

Repositories

Panel

Attributes

Panel

Work Area

(showing the following panels):
• General Settings Panel (Collapsed)

• Preview Panel (Expanded)
• Object Schema Panels (Expanded)

• Toolbar Schema Panel
• Wire Schema Panel

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 24

The Message Area is the primary area for the display of system messages. You can determine the
appearance of the Message Area using the Message Settings properties located in the General Settings
panel.

Breadcrumb

Use this to move to different components within your application configuration. When navigating between
different components, FLUID ensures that the original work mode (edit or display) for each component
remains the same.

Work Area

The Work Area is divided into a number of panels, each of which is described in the following sections.

General Settings Panel

The information displayed in the General Settings panel is component-dependent. Information that relates to
the floorplan or GUIBB component as a whole is displayed here. This panel is divided into the following
sections:

 Classification Settings
Allows you to classify component configurations, for example as 'Financials'; you
can then determine that configurations classified as 'Financials' are provided with
additional UIBBs (for example, the Chart GUIBB, which is not available to all users
of the FPM framework).

 Transient Settings
Allows you to determine the transient behavior of the application.

 Message Settings
Allows you to determine the appearance of the Message Area and whether or not
the message log is displayed.

 Additional Settings
Additional settings are specific for the OVP floor plan and the individual GUIBB
components. They relate to the floorplan or GUIBB component as a whole (for
example, the width of a list) and not to individual UI elements.

In the General Settings panel you can also access the following settings:

 Final flags

 Floorplan settings:
o Application controller settings
o Event action types
o Message Mapper settings

 Feeder class settings (specific to GUIBBs)

 Drag-and-Drop settings (specific to GUIBBs and visible in this panel only when
defined in the feeder class)

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 25

Preview Panel

The Preview panel is the developer´s main design-time area, displaying the interface of the application as a
set of configurable components. The way objects are displayed in this panel depends on which level of your
application, floorplan or UIBB, you are on:

Floorplan Level

Individual UIBBs appear in the Preview panel as separate boxes; each UIBB identified by its
component and configuration names.

You can navigate into the individual UIBBs directly from the Preview panel. You can tell if a UIBB is
configurable by moving the mouse over the UIBB box; the box changes color and an icon appears in
the top right corner of the box. Click the icon to navigate directly to the UIBB component. If the UIBB
component is actually a GUIBB component, you remain inside FLUID; otherwise, you are transferred
to the standard Web Dynpro editor.

You can also select the individual toolbar elements in this panel and edit their attributes.

UIBB Level

The Preview panel displays the UIBB as it appears at runtime, for example, as a table or a form.

On both levels, a context menu allows you, for example, to navigate to and configure the different
components in your application, add or delete UIBBs, add new sections and toolbar elements.

You can also access the properties of toolbar elements from this panel and move elements around on the
toolbar.

You can drag and drop items between the Repositories panel and the Preview panel.

Object Schema Panel (<Floorplan>/ <GUIBB> Schema Panel)

This panel outlines the structure of the individual GUIBB or floorplan and displays its UI elements. You can
move individual elements within the schema by using the Up and Down buttons or by dragging them to a
new location. You can select elements in the schema and edit their attributes in the Attributes panel.

This panel also provides you with the following actions:

 Add or remove individual UI elements to or from the GUIBB or floorplan, for
example:

o Add or delete a main or sub-step in a GAF component
o Add or delete a section and UIBB to and from an OVP component
o Add or delete a column in a list or hierarchical list component
o Add a Master Page Area to an OVP floorplan

 Configure a UIBB
You can switch directly from this view to editing the individual UIBBs. Use the
breadcrumbs above the Work Area to navigate back again.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 26

 Configure the IDR (of OIF and GAF components)

You can drag and drop items between the Repositories Panel and the Object Schema Panel.

Toolbar Schema Panel

This panel displays the toolbar plan and individual toolbar UI elements in your application. You can add
additional toolbar elements and edit their attributes displayed in the Attributes Panel. Note that the available
toolbar elements vary according to the type of page you are working with. The position of some toolbar
elements is determined by the FPM framework and is unchangeable.

Wire Schema Panel

This panel displays the individual wires between the UIBBs. It is available only for the floor plan components
and the Composite UIBB.

It allows you to add and remove wires and also gives you access to the Graphical Wire Editor, a tool for
displaying the wiring in your application in a graphical, easy-to-understand way.

Graphical Wire Editor

This editor allows you to view, edit and create the wires you need for your application. The editor supports
drag-and-drop. A central work area, the Wiring Pane, displays UIBBs that are currently wired, along with
information regarding their outports and connector classes. UIBBs that are not wired are displayed in the
Available UIBBs repository panel, and can be dragged into the work area. UIBBs are represented graphically
as boxes. Outports are displayed as colored arrows on the edges of the boxes, with labels displaying the
outport type.

To create a wire, drag an arrow from one box onto another box. The Connector Data dialog box appears,
allowing you to choose the Connector Class and related Connector Parameters. To display this dialog box at
any time, double-click the connecting lines between the UIBBs. Labels of connecting lines are provided by
the connector interface.

Wires that you created using the Graphical Wire Editor appear on the Wire Schema tab.

Attributes Panel

The attributes of configurable UI elements are displayed in this area. Whether you can edit these elements
depends on the UI element you have selected. You can see changes that you make to an attribute in this
panel also in the Preview panel. In the Attributes Panel, you also have access to the following:

 Settings for Final Flags

 Properties dependent on Display Types

 Action assignments for buttons

You can display the Attributes panel using the Attributes toggle-button on the main toolbar.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 27

Navigation/Repositories Panel

You can use this panel to display the Navigation or Repositories panels. Display them using the respective
toggle-buttons on the page toolbar.

Navigation

The Navigation panel allows you to move between and select the pages you would like to configure in your
application, for example, the initial screen, the main screen of an application, an edit page, or a dialog box.

Here, you can also add new, delete and copy pages in your application. The type of pages you can add
depends on the type of floorplan instance.

You can store multiple variants of a selected floorplan for each FPM application. A variant provides you with
an additional level of differentiation within Floorplan Manager. For example, you can use variants to show
multiple user roles in the same application at the same time. The individual variants are separated from one
another in an initial screen. See 'Variants' section in this document.

Repositories

The Repositories panel provides you with a list of repository items (for example, component configurations,
fields for forms and lists, search criteria) which can be dragged to and from the Object Schema or Preview
panel in the Work Area.

Different component configurations exist for different floorplans and GUIBBs. You can search for specific
component configurations by entering value in the Component, View or Configuration fields or you can
display all component configurations for a specific type of UIBB.

The Repositories panel also contains a Buttons section from which you can drag various button type
elements to and from the Toolbar Schema or Preview panel.

Changing the Layout of FLUID

You can change the layout of FLUID in the following ways:

 Personalize the Work Area

o Display panels in a collapsed or expanded state
o Drag and drop panels within the Work Area; drag and drop panels one under

the other or place them on top of each other to form a tabstrip

 Use the Personalize button () in the panels to control, for example, which fields
are displayed on the UI, and to discard any previous settings you made.

 Adjust the size of the Work Area using the splitter controls located at the bottom of
and on the left side of the Work Area

 Switch the Navigation, Repositories and Attributes panels on or off

Changes that you make are maintained when you open the application again.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 28

Working with FLUID

Working with FLUID is easy once you understand its layout. The following simple examples aim to get you
started.

It is assumed in the following examples that you edit configurations in developer mode.

Adding an Existing UIBB to your Application

You add existing UIBBs (freestyle, GUIBB, RUIBB) to the floorplan component configurations of your
application.

1. Run the application and choose the Configure Page icon on the toolbar.
FLUID is opened and displays the application in design mode.

2. Choose the Navigation button in the main toolbar to display the Navigation panel and
choose the page in which the UIBB will be inserted.

3. Choose the object schema panel (Guided Activity Schema, Overview Page Schema, Object

Instance Schema, and so on); this is the panel in which you insert your UIBBs.
4. Select an appropriate row in the table and choose Add UIBB in the toolbar of the

object schema panel.
5. In the dropdown list of the Add UIBB button, choose the type of UIBB that you want to

add to your floorplan.

The UIBB is added in the row that you selected. If you choose a Generic UIBB
(GUIBB) from the list (for example, Form Component), the system automatically
completes the fields Component (Name) and Window Name. You need only to enter the
name of your configuration. If you choose a freestyle UIBB, you must enter details
for all three fields, Component (Name), Window Name and Configuration Name.

6. (Optional) Choose the Feeder Class and Edit Parameters buttons to select the
relevant feeder class and its parameters.

7. Choose Save.
8. To see your changes at runtime, choose Test under the Additional Functions button on

the toolbar.

You can only edit your UIBB further, using FLUID, if you have entered a configuration name.

Changing the Title of a Step inside an Application based on the GAF Floorplan

1. Run the application and choose the Configure Page icon on the toolbar.
FLUID is opened and displays the application in design mode.

2. Choose the Navigation button in the main toolbar to display the Navigation panel and
choose the page on which the GAF roadmap exists (you can see the roadmap
immediately in the Preview panel).

3. Choose the relevant step in the Preview panel or in the Guided Activity Schema.
4. Choose the Attributes button in the main toolbar to display the Attributes panel and

enter a new name for the step in the Main Step Name (or Substep Name) field.
5. Choose Save.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 29

6. To see your changes at runtime, choose Test under the Additional Functions button on
the toolbar.

Editing the Form Component inside an Application

1. Run the application and do either of the following steps:
a. Choose the Configure Page button on the toolbar.

i. FLUID is opened and displays the application in design mode.
Choose the Navigation button in the main toolbar to display the
Navigation panel and find the page on which the form component exists
(you can see the form immediately in the Preview panel).

ii. Choose the form component in the Preview panel; the box changes
color and a button appears in the top right corner of the box.

iii. Choose the button in the box.

Or

b. Choose the Show Configurable Areas button on the toolbar.
i. Any UIBB that is configurable changes color when you hover the

mouse over it. Click on the configurable form component in your
application.

2. FLUID now displays the settings relevant for the form component only (and not for
the floorplan component). Notice that there are now different fields in the General

Settings tab; these are fields specific to the form component.
3. Make your changes and choose Save.
4. To see your changes at runtime, choose Test under the Additional Functions button on

the toolbar.

Adding a New Button to the Toolbar in a Floorplan Component of an Application

1. Run the application and choose the Configure Page icon on the toolbar.
FLUID is opened and displays the application in design mode.

2. Choose the Toolbar Schema.
3. Choose the Add Toolbar Element button in the toolbar of the Toolbar Schema.

The Select Toolbar Elements dialog box opens.
4. Choose a toolbar element from a range of buttons, button-choices and links.

The toolbar element now appears in the Toolbar Schema and is visible also in the
Preview panel.

5. Choose the Attributes button on the main toolbar to display the Attributes panel and
edit the fields of your new toolbar element (for example, enter a name for your
button in the Text field or assign an FPM event ID).

6. Choose Save.
7. To see your changes at runtime, choose Test under the Additional Functions button on

the toolbar.

Moving back to a Floorplan Component from a GUIBB Component

Once you have made changes to the GUIBB component (for example, a form or list component), you can
navigate back to the floorplan component by choosing the relevant link in the Breadcrumb above the Work

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 30

Area. The breadcrumb allows you to move between the GUIBB component and the floorplan component,
and finally back to the Hierarchy Browser.

Limitations

It is recommended that you use Internet Explorer 7 or higher.

Wire Model

The wire model can be used to create running FPM application by pure configuration or at least with minimal
coding effort. The runtime interdependencies between UIBBs are defined by configuration entities called
“wires” which are based on reusable “connector” classes implementing the dependency semantics. The
primary use cases for the wire model are object models with generic access interfaces (for example, ESF,
BOPF, or BOL).

A wire controls the runtime interdependencies between two UIBBs; that is, they determine the data content
of the target UIBB depending on user interaction changing the “outport” of the source UIBB. Outports can be
of type lead selection, selection or collection”. For example, the execution of a search on a Search GUIBB
will change its collection outport and may therefore change the data content of a result list displayed in a
separate List GUIBB. Similarly, changing the lead selection in a list of sales orders may change the data
content of another list displaying the associated sales order items.

In order to be part of a wire model, a UIBB needs to implement a certain Web Dynpro interface which in turn
provides a feeder model implementation. The FPM GUIBBs are automatically integrated if their feeder
classes implement the feeder model interface.

Application areas or object models define their own namespaces for which their connector classes, feeder
model classes can be reused. Moreover, they typically need to provide a transaction handler class which

manages transaction events like save, modify or check and global message handling.

Wires are defined on the level of the floorplan configuration. For each model UIBB contained in the floorplan
configuration, a source UIBB with specified outport can be defined. Furthermore, a connector class and,
potentially, connector parameters must be maintained.

If the floorplan contains composite components (tabbed components), the model UIBBs contained in the
tabbed components can also be wired. However, in order to provide better reusability of composite
components, it is also possible to define intrinsic wiring for tabbed components. A tabbed component can
define a model UIBB as a “wire plug” (this is usually a master UIBB), which serves as an entry point for the
wiring of the tabbed component from the enveloping floorplan component. If a wire plug is configured for a
tabbed UIBB, only the wire plug UIBB can be wired from outside.

IF_FPM_UIBB_MODEL Interface

This Web Dynpro interface needs to be implemented by freestyle UIBBs which shall be sources or targets of

wires. You only need to implement the method GET_MODEL_API such that it returns a bound reference to

the ABAP OO feeder model interface.

IF_FPM_FEEDER_MODEL Interface

The feeder model interface comprises methods which are called by the FPM framework.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 31

The following table describes the methods of the feeder class model:

Method Name Method Description

GET_NAMESPACE
Returns the namespace of the underlying application area. Method is called at
design time.

SET_CONNECTOR
Called upon instantiation of a UIBB. It hands over the connector (reference to

IF_FPM_CONNECTOR_RUN) which can be accessed for data retrieval at PBO.

GET_INPORT_KEY
Returns a reference to an object key which characterizes the meta data type
expected at the import (for example the business object node). Method is called
at design time.

GET_OUTPORTS
Provides a table of outports comprising the object key, the port type an identifier
and a descriptive text. Method is called at design time.

GET_OUTPORT_DATA
Returns an object reference carrying the actual data identifier for a certain port.
Method is called at runtime.

The actual object type and the type of data it contains (keys, GUIDs or entity references etc.) is left to the
design of the actual namespace. It is however important that there is a consistent handling inside a
namespace and that the data identifier allow each feeder model to uniquely identify the runtime data to be
accessed.

The IF_FPM_CONNECTOR connector interface comprises an interface, IF_FPM_CONNECTOR_DEF, defining

the access by the FPM framework and an interface IF_FPM_CONNECTOR_RUN for runtime access by the

application feeder model.

The definition interface possesses a static attribute, SV_NAMESPACE, which should be filled with the

namespace in the class constructor of a connector implementation (for example in a common superclass).

Methods of the connector interface: framework access part

Method Name Method Description

GET_PARAMETER_LIST
Connector classes can be parameterized to flexibly control their
runtime behavior. The parameter values are maintained for the wires
in the FPM configuration editor. A parameter is defined by a name,
its data type and a descriptive text.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 32

GET_PARAMETER_VALUE_SET
With this method, a connector implementation can provide a value
set for each parameter. For example, in an object model a parameter
may carry the association name. For a wire between specified
UIBBs, the method may provide a list of all associations between the
source and target business object node.

INITIALIZE
With this method the connector is initialized with the parameter
values. This method is called by the FPM runtime upon UIBB
instantiation.

SET_INPUT
Receives an object reference carrying the actual data of the
connected outport. This method is called before the UIBB‟s PBO by
the FPM runtime.

The runtime interface contains all the methods which are concurrently called in the request-response cycles
at runtime.

Methods of the connector interface: feeder model access part

Method Name Method Description

GET_OUTPUT Returns an object reference carrying the actual data to be displayed
by a UIBB. This method can be called by the UIBB at PBO for

example in the GET_DATA method of a feeder class.

CREATE_ENTITY Creates and returns a data entity which can be arbitrarily typed. This
method can be called by an action handler of the UIBB for example

in the PROCESS_EVENT method of a feeder class.

IS_CREATE_ALLOWED Returns a Boolean indicator whether entity creation is allowed. This
method can be called by the UIBB at PBO to dynamically control the
activation of create buttons for example to maintain the action usage

parameter in the GET_DATA method of a feeder class.

The transaction interface provides methods for handling global and transactional events. In the FPM
configuration editor, one transaction handler implementation can be assigned on the level of the wire model.

Methods of the transaction handler interface

Method Name Method Description

START
Receives basic data like the FPM message handler and
application parameters. This method is called once at
application start.

AFTER_FLUSH
This method is called after FLUSH has been called for all

current UIBBs. It can be used to flush buffers.
AFTER_PROCESS_EVENT

This method is called after PROCESS_EVENT has been called

for all current UIBBs. It can be used for handling transactional

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 33

events for example SAVE or CHECK. Moreover, it can be used

to collect messages which here not handled inside UIBBs and
to forward them to the FPM message handler.

AFTER_PROCESS_BEFORE_OUTPUT
This method is called after PBO has been called for all current
UIBBs. It can be used to collect messages at the latest
possible point in time before screen output.

AFTER_ NEEDS_CONFIRMATION
This method is called after NEEDS_CONFIRMATION has been

called for all UIBBs. It can be used to analyze and add
confirmation requests.

IS_DIRTY
This method can be used to indicate a dirty state for the work
protection mode

FPM on BOL

For the CRM Business Object Layer (BOL), there is a complete implementation of feeder classes for the
GUIBBs Form, List and Search and connector classes for trivial connections (“identity connector” used , for
example for a master-detail pattern) and BOL relations, as well as application entry via URL parameters with
implicit query execution.

There is also a BOL transaction handler class and assistance base classes for freestyle UIBBs.
1

Creating a GUIBB on BOL

Prerequisites

There is already a BOL component implementing the business logic.

Procedure

1. Start the configuration editor for the GUIBB component (FPM_FORM_UIBB,

FPM_LIST_UIBB or FPM_SEARCH_UIBB).

2. Choose feeder class CL_GUIBB_BOL_FORM for a form, CL_GUIBB_BOL_QUERY for a query

form, CL_GUIBB_BOL_LIST for a list or CL_GUIBB_BOL_DQUERY for a search GUIBB.
3. Maintain the feeder parameters. You must specify the BOL component and the BOL

object which specifies the object name, the query or the dynamic query.
4. After confirming the parameters, you will retrieve the feeders default configuration.

You may adjust it according to your needs.

You can also create your own feeder classes inheriting from the BOL feeder classes
above. In this way, you can adjust their behavior according to your needs with
minimal coding effort.

1
 The objects belong to package APB_FPM_BOL_CORE in the software component WEBCUIF. Sample

applications can be found in package APB_FPM_BOL_TEST.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 34

Creating an FPM Application on BOL

Below are the main steps for creating FPM applications on BOL objects. For a more detailed description of
this procedure, see Appendix 'Building FPM Applications on BOL'.

Prerequisites

You have created UIBBs on BOL.

Procedure

1. Create a configuration for the floorplan component (FPM_OIF_COMPONENT,

FPM_GAF_COMPONENT or FPM_OVP_COMPONENT).

2. Assemble the UIBBs on BOL according to your needs.

3. Navigate to the “Wire Model” node in the hierarchy (below the “Variant” node for
OIF and GAF).

4. Choose the “BOL Transaction Handler (CL_FPM_BOL_TRANSACTION)” as transaction
handler.

5. Choose the Add Wire button in the action region to create new wires or navigate to
the Wire node in the hierarchy to maintain existing wires.

6. Maintain the UIBB instance key of the (target) UIBB which shall receive the data
from another UIBB. (You may use the value help for any field of the instance key.)

7. Maintain the UIBB instance key of the source UIBB. (You may use the value help
for any field of the instance key.)

8. Maintain the outport of the source UIBB. (You may use the value help.)

9. Maintain the connector class. (You may use the value help.)

10. Maintain the connector parameters if the connector defines parameters. If there is
only a unique value, it is automatically filled (for example if the relation name is
unique between to BOL objects).

11. Repeat step 5 to 10 for all the dependencies of your UI.

12. Save your configuration.

13. Create or reuse a Web Dynpro application and create an application configuration
referencing your new floorplan component configuration.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 35

You can also create your own feeder classes inheriting from the above BOL feeder classes. Similarly you
can create your own connector classes inheriting from the above BOL connector classes. This way you can
adjust their behavior according to your needs with minimal coding effort.

You can also create your UIBBs on BOL out of the floorplan configuration. If you choose „FPM_BOL‟ as the
application area in the General Settings, the standard BOL feeder classes are set as default when creating
configuration for forms, lists, search and tree GUIBBs out of the floorplan configuration via drill down.

Design Time with the FPM Configuration Editor

FLUID allows you to perform the following tasks:

 Add extra steps or views (depending on your floorplan instance), including substeps
and sub views

 Configure the toolbar with predefined buttons and navigation menus and attach
events to these elements

 Attach your UIBBs to the relevant steps or views (or attach the FPM predefined
GUIBBs)

 Define the layout for a step or view.

 Within the actions area there is a button choice Add UIBB. It has the entries for
adding a form, a list, a tabbed component, and a search, and so on. If you select
one of those entries the Component and Window fields are prefilled. It is only
necessary to add the configuration ID.

 Configure Quick Help for your application

 Configure an initial screen, a confirmation screen and extra variants for your
application

 Change the global settings for your application and set variant parameters

 Activate the preview of UIBBs
Above the preview area, a new button Show UIBB Preview is added. If the button is
active you have the possibility to see the application how it looks like at runtime.

The interface view of your application is the smallest unit of application UI that can be configured in the FPM.
By assigning the interface view as a UIBB you are, in effect, composing how your application content area
will look when the application runs within FPM.

Floorplan Instances in the FPM Configuration Editor

What you see in FLUID depends on the type of floorplan instance you are using in your application.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 36

OIF Instance

Note that this floorplan has been superseded by the Overview Page (OVP) floorplan.

All new applications for object instances should be built using the OVP floorplan.

In an OIF application, FPM displays your UIBBs in multiple tabs. The Object Instance Schema displays the
following types of views:

 Main View:
These represent a single tab within the Content Area of your application. Attributes

allow you to name and identify the individual tabs. Each Main View contains one or
more sub-views.

 Sub-View:
You add your UIBBs to the sub views. An FPM application must have at least one
UIBB for each sub view. FLUID automatically provides this, but you can add your
own predefined UIBBs from your application. These UIBBs will be rendered one
beneath the other. As well as containing UIBBs, sub views enable you to further
divide your tabs for more complex applications.

You can configure headings for both main- and sub-views. However, if you create only one main view with
only one subview, then no tabs are displayed at all.

GAF Instance

In a GAF application, FPM displays your UIBBs as individual steps in the overall roadmap. For GAF
applications, the Guided Activity Schema displays the following types of steps:

 Main Step:
Each main step in the hierarchy represents one roadmap step. An FPM application
must have at least one UIBB for each main step. FLUID automatically provides this
but you can add your own predefined UIBBs from your application. Attributes allow
you to name and identify the individual main steps.

 Substep:
A substep is a step that appears between two main steps. Attributes allow you to
name and identify the individual substeps. Like a main step, substeps must have at
least one UIBB. You add UIBBS to a substep in the same way you add them to a
subview.

Substeps are not visible at startup, but all main steps that are a possible starting
point for substeps are indicated as such on the Roadmap Element at runtime.
Whether a substep is completed or not at runtime, depends on the application
context and the user input. Therefore, substeps are statically declared but activated
at runtime by the application (via the FPM API).

For more information on adding substeps and dynamically activating them, see
Adding and Activating Substeps for GAF Applications.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 37

OVP Instance

For information on the OVP floorplan, see Overview Page Floorplan.

Adding and Activating Sub-Steps for GAF Applications

The configuration of substeps is similar to that of main steps.

You can add one or more substeps to a main step and each substep can contain one or more UIBBs.

In FLUID, navigate to the floorplan component and on the Guided Activity Schema, choose the main step for
which you want to add a substep. Choose the Add Substep button on the schema toolbar.

After a substep has been configured statically, you may invoke it at runtime via the FPM API. This is done by
raising a special FPM event. Before raising this event, the event parameters are populated with the
corresponding substep ID that you want to use. This is shown in the sample code below:

DATA: lo_fpm TYPE REF TO if_fpm,

 lr_event TYPE REF TO cl_fpm_event.

* get reference to FPM API

lo_fpm = cl_fpm_factory=>get_instance().

* create event

lr_event = cl_fpm_event=>create_by_id(cl_fpm_event=>gc_event_change_step

).

* fill event parameters

lr_event->mo_event_data-set_value(

 iv_key = cl_fpm_event=>gc_event_param_mainstep_id

 iv_value = <ID of Main Step>).

lr_event->mo_event_data->set_value(

 iv_key = cl_fpm_event=>gc_event_param_substep_id

 iv_value = <ID of Sub-Step>).

lr_event->mo_event_data->set_value(

 iv_key = cl_fpm_event=>gc_event_param_subvariant_id

 iv_value = <ID of Sub-Step variant>).

* now raise event

Web Dynpro_this->fpm->raise_event(io_event = lr_event)

FPM Toolbar

FPM allows you to construct toolbars according to the latest SAP UI guidelines. You choose which toolbar
elements you require and FPM positions them in a predetermined location.

FPM allows you to configure the following toolbar elements:

 Standard function buttons
Buttons such as Check, Edit, Finish, Read-Only

 Application-specific buttons
Buttons to which you add your own code

 Button choices

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 38

Buttons which offer the user a dropdown menu with a list of further options. You can
define the individual menu options in a button-choice and attach events to them.
FPM provides no predefined events for these menu options but allows you to attach
your own events instead.

To attach your own predefined event to a button, enter a menu option name (Label)
and the event ID. When the menu option is selected during run-time, the FPM will
call up the attached event. A button choice is indicated in the Add Toolbar Element

dialog box by a small arrow in the bottom right-hand corner of the button.

 Navigation menus (You Can Also and Related Links)

The Close button appears automatically on the FPM toolbar but you cannot configure it like the above
standard function buttons. You can hide it by using the CNR API or with an application parameter

FPM_HIDE_CLOSE=X. The Close button can be activated - see SAP Note 1526176.

Differences between an OIF and a GAF Toolbar

OIF Application

There is only one toolbar in every OIF variant. FPM automatically adds a Save button to an OIF toolbar when
you create the component configuration. As the Save button belongs to the category Activation Function, you
can configure it (for example with a tooltip, label or event).

GAF Application

In a GAF application, every main step and substep inside a variant has its own toolbar. This enables you to
have a different toolbar configuration at each step in the roadmap. FPM automatically adds the Next and
Previous buttons to a GAF toolbar when you create the component configuration.

There is no „main‟ toolbar in a GAF application. If you require a particular button on the toolbar at each step
in the roadmap, you add it to each main step toolbar.

Adding Elements to a Toolbar

1. In FLUID, locate the OIF or GAF component of your application and choose Change.
This opens the OIF or GAF component configuration in edit mode.

2. To add an element to a toolbar, choose Add Toolbar Element in the Toolbar Schema. The
Add Toolbar Element dialog box appears.

3. Select a button and choose OK. The button now appears in the hierarchy under
Toolbar and the button‟s editable attributes are visible in the preview.

You can also drag toolbar elements from the Repositories panel on to the Toolbar Schema. See the section
on using FLUID.

Adjusting the Toolbar Dynamically

During runtime the content and visibility of the OIF and GAF toolbars may be changed via the Context
Navigation Region (CNR) APIs. Note that there are different APIs for each floorplan type.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 39

With these APIs you can dynamically change the FPM toolbars of both the initial screen and the main
screen.

Toolbar Buttons

The following table describes the non self-explanatory toolbar buttons.

Toolbar
Button Name

Toolbar Button Description

Activation
Function

The button within this category is placed on the first position on the toolbar. Basically, it
is the most important event on the screen. That is why this button is intended primarily to
be used as Save button. As most applications require a Save button, the FPM
configuration editor automatically adds this button to your configuration by default. The

FPM Event FPM_Save is set as the default FPM Event ID but you can edit this.

Alternate
Function

If another important event (besides the activation function) exists, applications can
define an alternate function. This is placed directly bedsides the activation function
button.

Other Function All other application-specific events are defined within the Other Functions area. These
buttons are placed after the standard buttons.

You can Also/
Related Links
(navigation)

These two toolbar elements provide navigation menu options (in a button-choice) away
from the FPM. These elements require a Role and an Instance, both of which are taken
from a launchpad which you must first create and configure.

Close See previous remark about this button in this section. See also SAP Note 1526176.

Exit to Main Step
(GAF only)

This is available only to substeps. If you click this button during run-time you return to
the Main Step to which the button is assigned.

Finish This is available only to main steps. If you click this button during run-time, the roadmap
is executed sequentially; the FPM will navigate automatically through the roadmap as far
as the last screen (before the confirmation screen) or will stop prematurely if it
encounters an error.

Next Step (GAF
only)

Extra attributes are available for Next Step in the final roadmap step.

Final Action (GAF
only)

You can explicitly define your own final action. This button is displayed directly next to
the Next Step button in the roadmap.

Toolbar Element Attributes

Toolbar elements have a variety of attributes and not every element has the same attributes. The table lists
some of the non self-explanatory toolbar button attributes.

Toolbar
Element
Attribute

Toolbar Element Attribute Description

Element ID Enter an Element ID if you want to change the properties of a toolbar element
dynamically during runtime.

Sequence Index This allows you to choose the order in which your application-specific UI elements (for
example Other Function buttons,) appear on the toolbar or in the hierarchy. The toolbar
elements which FPM automatically adds to the toolbar cannot be rearranged using this
attribute.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 40

Repeat Sel.
Action (Repeat
Select Action)

This is available for button-choice elements. If you tick this checkbox, the menu option
that is selected from a button-choice at run-time will then be visible as the button choice
title for the current session. If the user wishes to select the same option next time, he
must click only the button and not scroll through the list of menu options.

Enabled This grays out a toolbar element; it renders a toolbar element unusable if the checkbox
is not ticked.

Visibility If you check the visibility attribute of both the button and the button-choice, only the
button is visible in the toolbar.

Toolbar Button Events

Every Standard Function button is attached to an FPM event (for example, Edit is connected to the FPM

event GC_EVENT_EDIT). The connection to these raised FPM events is hard-coded and cannot be changed.

The event can, of course, be changed dynamically by calling other events.

Some button events are pre-configured by the FPM (for example, the Previous and Next navigation button
events and the Save button event) and require no extra code, but generally the application must provide the
event processing.

In general, the FPM ensures only that all affected UIBBs are informed. For example, although the FPM
provides a Print button, there is no print support in FPM. FPM provides this button only to ensure that it is
rendered according to the SAP UI Guidelines. The application must provide the necessary print functions.

The table below lists the toolbar buttons (and button-choices) and the events raised by them.

Toolbar
Button

Event Raised Floorplan
Instance

Activation
Function

self-defined via configuration OIF

Alternate
Activation

self-defined via configuration OIF

Check GC_EVENT_CHECK OIF

Close GC_EVENT_CLOSE OIF and GAF

Delete Object GC_EVENT_DELETE_CURRENT_OBJECT OIF

Edit GC_EVENT_EDIT OIF

Exit to Main
Step

GC_EVENT_EXIT_TO_MAIN_STEP GAF

Load Draft GC_EVENT_LOAD_DRAFT OIF

New GC_EVENT_NEW OIF

Next Object GC_EVENT_NEXT_OBJECT OIF

Next Step If no final action is defined: GC_EVENT_NEXT_STEP

If a final action is defined: the self-configured event in the final action
node and the next step event are raised

GAF

Other function self-defined via configuration OIF and GAF

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 41

Previous
Object

gc_event_previous_object OIF

Previous Step gc_event_previous_step GAF

Print gc_event_print OIF

Print Preview gc_event_print_preview OIF

Read Only gc_event_read_only OIF

Redo gc_event_redo OIF

Refresh gc_event_refresh OIF

Save As gc_event_save_as OIF

Save Draft gc_event_save_draft OIF and GAF

Send gc_event_send OIF

Start Over gc_event_start_over OIF

Undo gc_event_undo OIF

IF_FPM_CNR_GAF Interface

This interface provides you with methods to dynamically change the FPM toolbar of an initial screen or main
screen.

The interface is accessed via the CL_FPM_SERVICE_MANAGER, as the code below shows:

Accessing the API for a GAF application:

DATA: lo_cnr_gaf TYPE REF TO if_fpm_cnr_gaf,

 lo_fpm TYPE REF TO if_fpm.

lo_fpm = cl_fpm_factory=>get_instance().

lo_cnr_gaf ?= lo_fpm->get_service(cl_fpm_service_manager=>gc_key_cnr_gaf).

Methods

This interface provides you with the methods described in the following table.

Method Name Method Description

DEFINE_BUTTON With this method either standard buttons or application-specific

Toolbar Button-Choice Event Raised Floorplan Instance

Send self-defined via configuration OIF

Print self-defined via configuration OIF

Print Preview self-defined via configuration OIF

New self-defined via configuration OIF

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 42

buttons can be created and edited. The parameter IV_FUNCTION

defines the button type (see IF_FPM_CONSTANTS=>gc_button).

The ELEMENT_ID is needed if application-specific buttons must be

changed subsequently.

DEFINE_BUTTON_CHOICE With this method either standard button-choices or application-
specific button-choices can be created and edited. The parameter

IV_FUNCTION defines the button-choice type (see

IF_FPM_CONSTANTS=>gc_button_choice). The ELEMENT_ID is

needed if application-specific buttons must be changed
subsequently.

CREATE_SEPARATOR Use this method to create a separator at runtime in the

OTHER_FUNCTIONS area (application-specific).

DEFINE_YOU_CAN_ALSO Use this method to define launchpads for the You Can Also menu
bar for (see Navigation API chapter).

DEFINE_RELATED_LINKS Use this method to edit the menu bar for RELATED_LINKS (see

Navigation API chapter).

GET_BUTTONS This method determines which buttons (and their configurations)
are to be shown in the toolbar.

GET_BUTTON_CHOICES This method determines which button-choices (and their
configurations) are to be shown in the toolbar.

GET_SEPARATORS This method determines the positions of the separators in the
toolbar (only in the Other Functions area).

GET_RELATED_LINKS This method determines the contents of the Related Links menu in
the toolbar.

GET_YOU_CAN_ALSO This method determines the contents of the You Can Also menu in
the toolbar.

GAF Specific Parameters

Depending on the location of the UI elements that you wish to define, the following parameters (outlined in
the table below) are passed with every GAF CNR API method:

Location of UI Elements Parameters

Main Step VARIANT_ID

MAINSTEP_ID

Sub-Step VARIANT_ID

MAINSTEP_ID

SUBVARIANT_ID

SUBSTEP_ID

Initial Screen SCREEN

An example of method calls to change the CNR of the GAF at runtime is shown below:

DATA: lo_cnr_gaf TYPE REF TO if_fpm_cnr_gaf,

 lo_fpm TYPE REF TO if_fpm.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 43

lo_fpm = cl_fpm_factory=>get_instance().

lo_cnr_gaf ?= lo_fpm->get_service(cl_fpm_service_manager=>gc_key_cnr_gaf).

lo_cnr_gaf ->define_button(

 EXPORTING

 iv_variant_id = < optional; e.g. 'variant_1'; current variant if

skipped >

 iv_mainstep_id = < optional; „mainstep_1‟; current mainstep if skipped

>

 iv_subvariant_id = < optional;„subvariant_xyz‟>

 iv_substep_id = < optional;„substep_99‟>

 iv_function = < e.g. EXIT_TO, FINISH, OTHER_FUNCTIONS (appl-

specific buttons), SAVE_DRAFT, NEXT_STEP) see also

IF_FPM_CONSTANTS=>gc_button >

 iv_screen = < optional; the screen where the UI-Element has to be

changed (INIT, MAIN) >

 iv_element_id = < optional; only if you want to change the properties

of application-specific buttons afterwards>

 iv_sequence_id = < optional; only if you use OTHER_FUNCTIONS;

determines the place where to insert this button >

 iv_design = < optional; Button-Design >

 iv_enabled = < optional; Button-Enabling >

 iv_explanation = < optional; Button-Explanation >

 iv_on_action = < optional; determines the Event-Id for a button; not

possible with standard buttons >

 iv_text = < optional; Button-Label >

 iv_tooltip = < optional; Button-Tooltip >

 iv_visibility = < optional; Button-Visibility >

 iv_default_button = < optional; only for NEXT button; by pressing enter

within an application triggers the action of this button>).

 iv_hotkey = < optional; key-combination for activating the event

of this button>

lo_cnr_gaf->define_button_choice(

 EXPORTING

 iv_variant_id = < optional; e.g.'variant_1'; current variant if

skipped >

 iv_mainstep_id = < optional;„mainstep_1‟; current mainstep if

skipped >

 iv_subvariant_id = < optional;„subvariant_xyz‟>

 iv_substep_id = < optional;„substep_99‟>

 iv_function = < e.g. OTHER_FUNCTIONS (appl-specific button-

choices)>

 iv_screen = < optional; the screen where the UI-Element has to

be changed(INIT, MAIN) >

 iv_element_id = < optional; only if you want to change the button-

choice properties afterwards>

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 44

 iv_sequence_id = < optional; only if you use OTHER_FUNCTIONS;

determines the place where to insert this button-choice >

 iv_enabled = < optional; Button-Choice-Enabling >

 iv_text = < optional; Button-Choice-Label >

 iv_tooltip = < optional; Button-Choice-Tooltip >

 iv_visibility = < optional; Button-Visibility >

 it_menu_action_items = < menu elements of a Button-Choice >).

IF_FPM_CNR_OIF Interface

This interface provides you with methods to dynamically change the FPM toolbar of an initial screen or main
screen.

The interface is accessed via the CL_FPM_SERVICE_MANAGER, as the code below shows:

Accessing the API for an OIF application:

DATA: lo_cnr_oif TYPE REF TO if_fpm_cnr_oif,

 lo_fpm TYPE REF TO if_fpm.

lo_fpm = cl_fpm_factory=>get_instance().

lo_cnr_oif ?= lo_fpm->get_service(cl_fpm_service_manager=>gc_key_cnr_oif).

Methods

This interface provides you with the methods described in the following table.

Method Name Method Description

DEFINE_BUTTON With this method either standard buttons or application-specific

buttons can be created and edited. The parameter IV_FUNCTION

defines the button type (see IF_FPM_CONSTANTS=>gc_button).

The ELEMENT_ID is needed if application-specific buttons must be

changed subsequently.

DEFINE_BUTTON_CHOICE With this method either standard button-choices or application-
specific button-choices can be created and edited. The parameter

IV_FUNCTION defines the button-choice type (see

IF_FPM_CONSTANTS=>gc_button_choice). The ELEMENT_ID is

needed if application-specific buttons must be changed
subsequently.

CREATE_SEPARATOR Use this method to create a separator at runtime in the

OTHER_FUNCTIONS area (application-specific).

DEFINE_YOU_CAN_ALSO Use this method to define launchpads for the You Can Also menu
bar for (see Navigation API chapter).

DEFINE_RELATED_LINKS Use this method to edit the menu bar for RELATED_LINKS (see

Navigation API chapter).

GET_BUTTONS This method determines which buttons (and their configurations)
are to be shown in the toolbar.

GET_BUTTON_CHOICES This method determines which button-choices (and their
configurations) are to be shown in the toolbar.

GET_SEPARATORS This method determines the positions of the separators in the

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 45

toolbar (only in the Other Functions area).

GET_RELATED_LINKS This method determines the contents of the Related Links menu in
the toolbar.

GET_YOU_CAN_ALSO This method determines the contents of the You Can Also menu in
the toolbar.

OIF Specific Parameters

Since a toolbar exists for every OIF variant, only the VARIANT_ID must be passed with every OIF CNR API

method.

Example

An example of method calls to change the CNR of the OIF at runtime is shown below:

DATA: lo_cnr_oif TYPE REF TO if_fpm_cnr_oif,

 lo_fpm TYPE REF TO if_fpm.

lo_fpm = cl_fpm_factory=>get_instance().

lo_cnr_oif ?= lo_fpm->get_service(cl_fpm_service_manager=>gc_key_cnr_oif).

lo_cnr_oif->define_button(

 EXPORTING

 iv_variant_id = < optional; e.g. 'variant_1'; current variant if

skipped >

 iv_function = < e.g. ACTIVATION_FUNCTIONS (appl-specific

buttons),ALTERNATE_FUNCTIONS (appl-specific buttons), CHECK, DELETE_OBJECT,

EDIT, LOAD_DRAFT, NEW, NEXT_OBJECT, OTHER_FUNCTIONS (appl-specific

buttons), REVIOUS_OBJECT, PRINT, PRINT_PREVIEW, READ_ONLY,REDO, REFRESH,

SAVE_AS, SAVE_DRAFT, SEND, START_OVER, UNDO, see also

IF_FPM_CONSTANTS=>gc_button >

 iv_screen = < optional; the screen where the UI-Element has to be

changed (INIT, MAIN) >

 iv_element_id = < optional; only if you want to change the button

properties afterwards >

 iv_sequence_id = < optional; only if you use OTHER_FUNCTIONS;

determines the place where to insert this button >

 iv_design = < optional; Button-Design >

 iv_enabled = < optional; Button-Enabling >

 iv_explanation = < optional; Button-Explanation >

 iv_on_action = < optional; determines the Event-Id for a button; not

possible with standard buttons >

 iv_text = < optional; Button-Label >

 iv_tooltip = < optional; Button-Tooltip >

 iv_visibility = < optional; Button-Visibility >

 iv_default_button = < optional; only for buttons CHECK and REFRESH; by

pressing enter within an application triggers the action of this button >

 iv_hotkey = < optional; key-combination for activating the event

of this

 button >

 iv_hotkey = < optional; Button-Hotkey >

 iv_action_type = < optional; action type of the button event –

standard or validation-independent >

 iv_image = < optional; Button-Icon >

lo_cnr_oif->define_button_choice(

 EXPORTING

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 46

 iv_variant_id = < optional; e.g. 'variant_1'; current variant if

skipped >

 iv_function = < e.g. NEW, OTHER_FUNCTIONS (appl-specific button-

choices), PRINT, PRINT_PREVIEW, SEND, see also

IF_FPM_CONSTANTS=>gc_button_choice >

 iv_screen = < optional>; the screen where the UI-Element has to

be changed (INIT, MAIN) >

 iv_element_id = < optional; only if you want to change the button-

choice properties afterwards >

 iv_sequence_id = < optional; only if you use OTHER_FUNCTIONS;

determines the place where to insert this button-choice >

 iv_enabled = < optional; Button-Choice-Enabling >

 iv_text = < optional; Button-Choice-Label >

 iv_tooltip = < optional; Button-Choice-Tooltip >

 iv_visibility = < optional; Button-Visibility >

 it_menu_action_items = < menu elements of a Button-Choice >

FPM Complete Preview

In order to enable the preview feature for a self-developed UIBB you must implement the FPM Web Dynpro

IF_FPM_CFG_UIBB_PREVIEW interface. The interface provides the UIBB_PREVIEW method with the

IV_INTERFACE_VIEW importing parameter, which is the actual visible view, and the EV_PREVIEW_WINDOW

exporting parameter.

The application itself needs to check that the window which is returned is defined and will work at design
time.

FPM Identification Region (IDR)

The Identification Region (IDR) consists of the following three areas:

 Header area (IDR Basic)
 Ticket area (IDR Extended)
 Items area

This is illustrated in the figure below:

Both the header and the ticket areas can be configured at design-time in the Component Configuration
window for the IDR configuration.

Note the following points regarding the ticket area:

Items Area

Header AreaTicket Area

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 47

 The ticket area is only available for OIF applications.
 To configure the ticket area, choose Add IDR Extended.

Attributes for Ticket Top and Ticket Bottom appear. These attributes can be called dynamically to add
label/value pairs, label/navigation link pairs and label/icon pairs to the ticket area.

Adjusting the IDR Dynamically

During runtime, use the IDR API to make changes to the individual IDR areas. This API consists of the
methods encapsulated in the IF_FPM_IDR interface.

Adding a Link to the FPM Configuration Editor in the IDR

You can provide your application with a link to the FPM configuration editor from the IDR. For more
information, see Providing a Link to the FPM Configuration Editor.

IF_FPM_IDR Interface

This interface provides you with methods to change the IDR dynamically at run-time.

The sample code below shows you how to access this interface:

DATA: lo_idr TYPE REF TO if_fpm_idr,

 lo_fpm TYPE REF TO if_fpm.

lo_fpm = cl_fpm_factory=>get_instance().

lo_idr ?= lo_fpm->get_service(cl_fpm_service_manager=>gc_key_idr).

There are methods available for each of the following IDR areas:

Methods for IDR Header Area

Method Name Method Description

GET_APPLICATION_TITLE Retrieves the title text and its tooltip.

SET_APPLICATION_TITLE Displays a new title text and tooltip in the header area.

SET_HEADER_VISIBILITY Makes the header area visible or invisible.

Methods for IDR Ticket Area

Method Name Method Description

GET_TICKET Retrieves the texts of the ticket top, ticket bottom and their tooltips.

SET_TICKET Displays new texts of the ticket top, ticket bottom and their tooltips.

SET_TICKET_VISIBILITY Makes the ticket area visible or invisible.

Methods for Items Area

Method Name Method Description

ADD_ITEM_GROUP_BY_VAL Adds a new item group to the item area. One item consists of a label,
its tooltip, a value and the value‟s tooltip. A group of items consists of

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 48

an arbitrary amount of such items. With this method, you can add
items to the IDR as simple static text strings. Therefore, if the value of
an item needs to be changed at a later point in time, you will need to

call method CHANGE_ITEM_GROUP_BY_VAL. The method

ADD_ITEM_GROUP_BY_REF can also be used to pass references to

Web Dynpro context nodes to the IDR. In this case, the value
changes automatically when the value of the corresponding attribute
in the context node changes.

CHANGE_ITEM_GROUP_BY_VAL Changes the label and values that were passed to the IDR via the

method ADD_ITEM_GROUP_BY_VAL.

ADD_ITEM_GROUP_BY_REF Similar to ADD_ITEM_GROUP_BY_VAL. Adds label/value items to the

IDR. In this case, the value is not passed as a static text but as
reference to a Web Dynpro context node attribute. The advantage
here is that the value can be of a type other than string. In addition,
updating the value happens automatically; whenever the attribute of
the context node changes, the IDR changes the visible value. It is
also possible for the IDR to show the unit of the value. Do this using a
flag; the actual unit is taken from the DDIC information of the value‟s
type. Therefore, this feature will only work if the type of the attribute in
the context node, (which is passed to the IDR) has a defined DDIC
unit.

ADD_NAVIGATION_ITEM Adds a pair of label/navigation links to the IDR. The link itself is
provided by the report launchpad. It makes no difference whether the
link in the report launchpad is supplied by the database or is created
dynamically during runtime via the report launchpad API. For more
information about the report launchpad, refer to the report launchpad
documentation. You specify the launchpad via the parameters
instance and role. Since one launchpad may contain several targets
(and this method is used to add only one target), use an additional
parameter to specify the single target. The additional parameter is
either the application alias or the navigation key.

CHANGE_NAVIGATION_ITEM Use this method to edit a pair of label / navigation links that you

added using the method ADD_NAVIGATION_ITEM. It is possible to

change only the label and the link text with this method. If you want to
change the target itself, use the report launchpad API.

ADD_IMAGE_ITEM Adds pairs of label/icons to the IDR.

CHANGE_IMAGE_ITEM Edits a label/icon pair that you added using the method

ADD_IMAGE_ITEM.

CONTAINS_ITEM_GROUP Checks whether a certain item group exists within the IDR.

REMOVE_ITEM_GROUP Removes a certain item group from the IDR.

INITIALIZE_ITEMS Clears all items from the IDR.

SET_ITEMS_VISIBILITY Edits the visibility of the item area (the visibility status of all items, not
just single items).

Providing a Link to the FPM Configuration Editor in the IDR

There are currently two options to provide a link (in the IDR header area of your FPM application) which
points to the FPM Configuration Editor:

 Using transaction SU3

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 49

To do this, proceed as follows:

1. Open transaction SU3 and choose the Parameters tab.

2. Add the parameter FPM_CONFIG_EXPERT and set the Parameter Value to X.
3. The Change Configuration link appears in the IDR header area when you start

the FPM configuration editor, via the Web Dynpro Explorer, for your
application configuration. This corresponds to a change of the explicit and
implicit configuration in development mode.

 Starting your FPM application with URL parameter SAP-CONFIG-MODE=X
The link Adapt Configuration appears in the IDR header area when you start the FPM

configuration editor via Web Dynpro application CUSTOMIZE_COMPONENT. This
corresponds to a customizing of the explicit and implicit configuration in the
administrator mode. In the administrator mode you may adapt all elements of the
configuration that have not been marked previously as final elements in the
development mode.

Quick Help

You can use this function in a floorplan to provide application users with a helpful explanation of a subview,
initial screen, main step, or substep at runtime. The quick help is only displayed if the user has activated it
using the context menu.

Features

You can either enter the quick help text directly or give a reference to a documentation object. It is a good
idea to use a reference to a documentation object when the content of the quick help is used in multiple
views or applications. If you enter a text directly and enter a reference to a documentation object, then the
content of the documentation object is displayed as quick help.

You can display the quick help using the application's context menu. You can create, change, or delete quick
help texts.

The quick help text is stored in either the Text or Documentation Object attributes of an Explanation element.

You can also delete a quick help completely by selecting the Delete function in the attribute view of an
Explanation hierarchy element.

Creating Quick Help

Procedure

To create a quick help in the configuration editor, you can either enter the quick help text directly or enter a
reference to a documentation object.

Creating Quick Help as Direct Text

1. Locate the required application in the ABAP Workbench and launch FLUID.
2. Ensure you are in edit mode.
3. On the object schema tab, select the subview, main step, substep, or initial screen

and choose Add Explanation in the toolbar.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 50

4. In the Text field in the Attributes panel, overwrite the suggested text with the quick
help text you would like to be displayed to the user at runtime.

5. Save your changes.

Creating Quick Help Linking to a Documentation Object

1. To create a documentation object, choose SAP Menu Tools ABAP
Workbench Utilities SE61 – Documentation .

2. Choose General Text as the document class.
3. Enter a technical name for the documentation object.
4. Choose Create and enter the desired quick help text.
5. Choose Save Active.

The documentation object is now created and can be assigned as a quick help.
6. Locate the required application in the ABAP Workbench and launch FLUID.
7. Ensure you are in edit mode.
8. On the object schema tab, select the subview, main step, substep, or initial screen

and choose Add Explanation in the toolbar.
9. In the Documentation Object field in the Attributes panel, enter the technical name of the

documentation object.
10. Save your changes.

Variants

In some cases, the final configuration of an OIF view switch, GAF roadmap or OVP page may only be
decided at runtime. For example, assume that an initial screen asks you to select one of three options. The
subsequent roadmap or view switch that appears is dependent on the option you selected in the initial
screen. FPM makes this possible by allowing you to configure variants. Each variant is a complete set of
configuration. You use the input from the initial screen (or from other startup information, such as application
parameters) to select one of the variants.

Configuring Variant Selection

Variant selection is controlled programmatically with an application-specific configuration controller (AppCC).

To configure variant selection, proceed as follows:

1. Implement the interface IF_FPM_OIF_CONF_EXIT (or IF_FPM_GAF_CONF_EXIT) in one of
the application components or in a new component. This interface has only one

method OVERRIDE_EVENT_OIF (or OVERRIDE_EVENT_GAF) which passes a handler

object of type IF_OIF (respective IF_GAF). This handler object provides the API with
information to manipulate the floorplan configuration at runtime.

2. To select the variant, use the SET_VARIANT method of this object as follows:

OIF Instance

method OVERRIDE_EVENT_OIF .

 ...

 case io_oif->mo_event->MV_EVENT_ID.

 when if_fpm_constants=>gc_event-leave_initial_screen.

 io_oif->set_variant().

 ...

GAF Instance

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 51

method OVERRIDE_EVENT_GAF .

 ...

 case io_gaf->mo_event->MV_EVENT_ID.

 when if_fpm_constants=>gc_event-leave_initial_screen.

 io_gaf->set_variant().

In this sample code the variant selection takes place after the initial screen is exited. This is the latest point at
which it is possible to select the variant. You can, however, select the variant at an earlier stage.

The last thing to do is to declare the AppCC to the FPM:

1. In the FPM configuration editor, open the component configuration editor window. In
the control region, choose Change Global Settings .

2. In the Global Settings dialog box, under Application-Specific Parameters, enter the Web
Dynpro Component which you are using as an application-specific configuration
controller.

3. Choose Save.

Initial Screen

The Initial Screen is an optional screen. It is composed of one or more UIBBs.

Open the Navigation panel in FLUID to add an initial screen.

FPM adds the Continue button automatically to the toolbar of the initial screen. It is non configurable. When

you choose this button at run-time, FPM raises the event IF_FPM_CONSTANTS=>GC_EVENT-

LEAVE_INITIAL_SCREEN, exits the initial screen, and displays the first roadmap step (in GAF instances) or

View Switch (in OIF instances). Occasionally, you need to omit the initial screen from your application. If this

is the case, raise the LEAVE_INITIAL_SCREEN event within your application-specific code:

data: lo_fpm type ref to if_fpm

lo_fpm = cl_fpm_factory=>get_instance()

lo_fpm->raise_event_by_id(IF_FPM_CONSTANTS=>GC_EVENT-LEAVE_INITIAL_SCREEN).

If your application has no initial screen, FPM displays the view switch (OIF) or the first roadmap step (GAF)
at start-up.

Skipping the Initial Screen

OIF and GAF applications may start with an initial screen, in which you select the object you intend to work
with. If the object is already known by the application (e.g. you are calling the application with the parameters
already set), the initial screen is unnecessary. To skip an initial screen at runtime, proceed as follows:

Launch the FPM event LEAVE_INITIAL_SCREEN. You can launch this one of two ways:

 in the OVERRIDE_EVENT_*-method of your AppC

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 52

 in the PROCESS_BEFORE_OUTPUT method of one of your initial screen UIBBs (if you are
not using an AppCC):

data: lo_fpm type ref to if_fpm,

 lv_object_id type string.

* Check event id

 if lv_event_id = if_fpm_constants=>gc_event_start.

* Determine if Parameter OBJECT_ID is provided

 lo_fpm = cl_fpm_factory=>get_instance().

 lo_fpm->mo_app_parameter->get_value(

 exporting iv_key = 'OBJECT_ID'

 importing ev_value = lv_object_id).

* In case OBJECT_ID is set, navigate directly to the main floorplan *

area

 if not lv_object_id is initial.

 lo_fpm->raise_event_by_id(

 if_fpm_constants=>gc_event-leave_initial_screen).

 endif

endif

For an initial screen that contains only GUIBBs (without free-style UIBBs and without an AppCC), you must

use the GET_DATA method of the feeder class. There is no PROCESS_BEFORE_OUTPUT method available for

applications if only GUIBBs are used (and therefore, it is not possible to raise the FPM event

LEAVE_INITIAL_SCREEN.

Confirmation Screen

Confirmation screens are available for all floorplans.

The floorplan type determines when and where exactly a confirmation screen appears in an application. In
OIF and OVP instances, the confirmation screen appears only when the object currently being processed in
the application is deleted. In a GAF instance, it appears as the final step at the end of the roadmap to inform
the user that the action he or she has just executed has been successfully completed

You can add confirmation screens to your application via the Navigation panel in FLUID (Add Page button).

You can configure separate confirmation screens for individual variants for OIF and GAF instances. In OVP
instances, you configure as many confirmation screens as you need and specify which confirmation screen

you must navigate to when deleting an object and raising the IF_FPM_CONSTANTS=>GC_EVENT-

DELETE_CURRENT_OBJECT event.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 53

FPM Event Loop

In Web Dynpro ABAP programming, a user interaction is reflected by a Web Dynpro action. If you require a
user interaction to affect not only a local component but other components in the application too, the Web
Dynpro action must be transferred to an FPM event.

This FPM event then passes through an FPM phase model (Event Loop) which is integrated into the Web
Dynpro phase model. Within the FPM event loop all involved components can participate in the processing of
the event.

If the FPM event results in another screen assembly (for example, navigation to another step in a GAF
application or the selection of another view or sub view in an OIF application), the FPM handles this itself;
there is no need for the application to fire plugs or similar.

Raising Standard Events

In a floorplan-based application, most events are triggered when a user chooses Next or Previous (in a GAF
instance) or when switching from one view to another (in an OIF instance). For these interactions, the FPM
automatically initiates the FPM event loop. Furthermore, these standard events are handled generically by
the FPM.

However, there are scenarios where a standard event needs to be triggered from within an application-
specific UIBB, for example by-passing the initial screen if all necessary start-up parameters have been
provided as URL parameters.

Each FPM event is represented at runtime by an instance of the class CL_FPM_EVENT. This class

encapsulates all information (including the ID and additional, optional parameters) which is needed to
execute the event.

Triggering the FPM Event Loop

To trigger an FPM event loop, you complete the following two steps:

1. Create an instance of CL_FPM_EVENT with the appropriate attributes. For all the

standard event IDs, there are constants available in the IF_FPM_CONSTANTS interface.

2. Raise the event by calling the method IF_FPM~RAISE_EVENT and passing on the

instance of CL_FPM_EVENT.

When an event requires no additional parameters, other than the event ID, the FPM offers an additional

method RAISE_EVENT_BY_ID. This makes Step 1 above obsolete. In this case, raise the FPM event as

detailed in the sample code below:

data lo_fpm type ref to if_fpm

lo_fpm = cl_fpm_factory=>get_instance()

lo_fpm->raise_event_by_id(IF_FPM_CONSTANTS=>GC_EVENT-LEAVE_INITIAL_SCREEN)

Since it is unknown whether the event can be executed successfully or not at the point the event is raised, do

not enter code after the call to RAISE_EVENT[_BY_ID].

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 54

Triggering Application-Specific Events

To raise an application-specific event, follow the same rules as described in Triggering the Event Loop. The
only difference is that the FPM, since it does not know the semantics of the event, does not perform specific
actions for this event. However, the processing of the event is identical, in that all involved components
participate in the event loop in the same way as with „standard events‟ (see Reacting to Framework Events).

The following code provides an example of triggering an application-specific event (including event
parameters):

data: lo_fpm type ref to if_fpm,

 lo_event type ref to cl_fpm_event.

create object lo_event

 exporting

 iv_event_id = 'DELETE_AIRPORT'.

lo_event->mo_event_data->set_value(

 iv_key = 'AIRPORT_ID'

 iv_value = lv_airport_id).

lo_fpm = cl_fpm_factory=>get_instance().

lo_fpm->raise_event(io_event = lo_event).

Reacting to Framework Events

The FPM event loop is integrated into the Web Dynpro phase model, as the following figure shows:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 55

Key Web Dynpro Methods

The following Web Dynpro methods are important in FPM applications:

Method Method Description

DOINIT A standard Web Dynpro method that is called only once in the lifetime of a Web
Dynpro component by the Web Dynpro runtime. This method is used to initialize
your component, for example initialize attributes and create helper classes).

DOBEFOREACTION A standard Web Dynpro method that is called by the Web Dynpro runtime on all
visible UIBBs when the user triggers a round trip. According to Web Dynpro
programming guidelines, generic validations must be handled in this method; for
example check that all mandatory fields are filled.

Action handler
(ONACTION…)

The registered Web Dynpro action handler is called. You then have the following
options:

 If the user interaction does not affect other UIBBs, and there is
no need for FPM features such as data-loss dialog boxes, you
can handle the action locally in your UIBB. Use standard Web
Dynpro programming; for example selection of another radio-
button leads to different enabled/disabled settings of other
controls on the same view.

 However, for all actions which may affect other UIBBs, raise
an FPM event.

Different Categories of Web Dynpro Interfaces

Regarding the behavior of instantiating the Web Dynpro components and their participation within the FPM
event loop, the Web Dynpro interfaces provided by the FPM can be divided into two categories:

 Category 1
More than one Web Dynpro component implements this Web Dynpro interface.
Those which do may have more than one instance and the instances may only
participate in a part of the FPM event loops during the application‟s lifetime.

The following Web Dynpro interfaces belong to this category:

o IF_FPM_UI_BUILDING_BLOCK

o IF_FPM_TRANSACTION, IF_FPM_WORK_PROTECTION

o IF_FPM_RESOURCE_MANAGER

 Category 2
Only one Web Dynpro component implements this Web Dynpro interface. The
corresponding Web Dynpro component has only one instance which participates at
all FPM event loops that happen during the application‟s lifetime.

The following Web Dynpro interfaces belong to this category:

o IF_FPM_APP_CONTROLLER

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 56

o IF_FPM_SHARED_DATA

o IF_FPM_OIF_CONF_EXIT (or IF_FPM_GAF_CONF_EXIT)

Overview Page Floorplan (OVP)

You can use the OVP floorplan (OVP) to model an application user interface that displays an overview of the
most important data of a business object instance to the user and that enables editing, deleting and creating
new data. An OVP application consists of a set of pages and the navigation between these pages.

The pages and the navigation between them can be configured in the FLUID.

Technically speaking, the OVP is based on the WD component FPM_OVP_COMPONENT. An OVP

configuration is therefore a component configuration of that WD component.

Structure of an OVP

Page

Each OVP configuration consists of at least one page (also known as a Content Area). Depending on its
business semantics, a page is of one of the following page types:

 Initial Page
This page is optional and can either be used to present a table of objects (for
example, recently-used objects or a result list of a search) that can be selected for
further processing, or to enforce input of important data that is required before the
Main Overview Page of the business object instance is displayed.

 Main Overview Page
This page is the heart of any OVP application. The Main Overview Page presents
all the data of a business object instance to the user that is relevant within the
application context. Depending on the application, editing the business object
instance is possible in-place directly on the Main Overview Page.

 Sub-Overview Page
If a business object is very complex and consists of sub-objects, an OVP application
can provide one or more Sub-Overview Pages in addition to the Main Overview
Page.

 Edit Page
Depending on the application, editing the business object instance can also be done
on separate, dedicated Edit Pages.

 Confirmation Page
The OVP application can be terminated by displaying a Confirmation Page (for
example, if the business object instance is to be deleted)

 Dialog Box
Dialog boxes are used for short interactions with the user that must be completed
before continuing with a task.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 57

Section

A page consists of one or more sections which you use to structure a page.

Each section has its own layout and can contain numerous application-specific user interface building blocks
(UIBBs) and/ or generic user interface building blocks (GUIBBs).

Various layouts are possible for a section, differing mainly in the number of columns into which the section is
divided. You assign the UIBBs and GUIBBs to the individual columns within a section.

UIBBs / GUIBBs

A UIBB or a GUIBB inside a section is rendered either as a panel or flat without a panel. If rendered as
panel, it is called an 'Assignment Block'. Its title is displayed in the panel header. An assignment block may
have an own toolbar. The buttons, toggle buttons, and button choices of that toolbar are also rendered in the
panel header.

The following figure illustrates the structure of an OVP page:

Page Header Title

Page Header Toolbar

UIBB 1

UIBB 2

UIBB 3

UIBB 4 UIBB 5

UIBB 6

UIBB 7

Fixed Page Header

Scrollable

Container for

UIBB area

Section

(with individual

column layout)

Section Column

UIBB

Page

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 58

Stacking

You can enable each section column for 'Stacking'. If stacking is enabled for a section column, the UIBBs
can be dragged at runtime and dropped onto each other in that column, thus building a stack in which each
UIBB is represented by a tab. This is known as a Stacked Panel.

In the configuration editor, UIBBs can be stacked using appropriate values for the properties Column (=
Location), Row, and Index (see figure below):

There are two possible states for a stacked panel:

 Expanded
In an expanded stacked panel there is exactly one UIBB that is expanded, that is,
its property Collapsed is set to FALSE. All other UIBBs are collapsed, that is, their
property Collapsed is set to TRUE. The expanded UIBB is the active UIBB in the
stacked panel. Its property Default In Stack is set to TRUE.

 Collapsed
In a collapsed stacked panel all UIBBs are collapsed, that is, their property Collapsed
is set to TRUE. There is, though, exactly one UIBB in the stacked panel with the
property Default In Stack set to FALSE. If the stacked panel is expanded, this UIBB
becomes the active UIBB.

Page Master

The Page Master can either be a list or a hierarchical tree. It allows an object selection that is valid for all
assignment blocks on the page. On selection of an object in the Page Master, all assignment blocks must
react and, depending on the use case, probably refresh their content.

A Page Master is not displayed in a collapsible assignment block but in a non-collapsible panel in a special
screen area.

UIBB 1

UIBB 2

UIBB 3

Column = 1

Row = 0

Index = 1

Column = 1

Row = 0

Index = 2

Column = 1

Row = 0

Index = 3

UIBB position in a section column

for which stacking is switched off

(one UIBB below each other)

UIBB 1

UIBB 5

UIBB 7

Column = 1

Row = 1

Index = 1

Column = 1

Row = 2

Index = 1

Column = 1

Row = 3

Index = 1

UIBB position in a section column

for which stacking is switched on

UIBB 2 UIBB 3 UIBB 4

UIBB 6

Column = 1

Row = 1

Index = 2

Column = 1

Row = 1

Index = 3

Column = 1

Row = 1

Index = 4

Column = 1

Row = 2

Index = 2

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 59

There are two possible positions for a Page Master:

 Above
Page Master is above the assignment block area with full width and all the
assignment blocks below a separator

 Left
Page Master is left of the assignment block area with full height and all the
assignment blocks on the right side of a separator. Here, it is recommended that
you use 1/3 of the screen width for the Page Master and 2/3 for the assignment
blocks.

According to UI guidelines there is a header 'Details: <identifier of selected item>' above the assignment
blocks. Normally the master table has a default selection (first line). If it is necessary to start with no selection

in the master table, the details are not shown and a text is displayed ('No Detail Selected'). The latter

functionality is not provided by the FPM, but it is in the responsibility of the application to behave in this way

The Page Master table can be hidden with a toggle-button in the page toolbar. This button can be named

according to the use case (for example, in the screenshot below it is 'Overview').

The screenshots below show an Overview Page with a Page Master on the left side and an Overview Page
with a Page Master on-top, respectively.

Page Master left Assignment Block area

Header

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 60

Personalization

Personalization allows users to change the structure of an overview page at runtime to suit their own
individual requirements. Personalization can be switched on and off in the configuration editor or by API
method call for the following parts of an application:

 the whole application

 a given content area

Personalization Off Personalization On

The expand/collapse state of panels does not
persist.

The expand/collapse state of the panels
persists.

Dragging and dropping of UIBBs is possible and
their arrangement does not persist.

Dragging and dropping of UIBBs is possible and
their arrangement persists.

No Personalization Editor is available. A Personalization Editor can be opened at
runtime, allowing you to perform additional
activities.

Page Master on-top

Assignment Block area

 Header

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 61

Currently, the following attributes are stored in the personalization settings:

 Content Area: ID

 Section: ID, Layout Type, Index

 Section Column: Stacking

 UIBB: UIBB key, Column (=Location), Row, Index, Hidden, Collapsed, Default In Stack

 Page Master Area: Position, Sash Position, Sash Position Mode

Note that the OVP always considers all UIBBs of a page when storing personalization settings that are in any
way relevant for an UIBB. This means that potentially the state of all UIBBs is stored in personalization even
though there was just a change in the properties of one UIBB. If there is already customizing data available
only the delta changes compared to the customizing data are stored in personalization.

 If there are personalization settings for a particular page on top of customizing data and the customizing
data for that page is changed or deleted afterwards the resulting page layout might be unexpected when the
application is started again in end-user mode. This is a consequence of the stored delta changes in
personalization.

Personalization Editor

To open the Personalization Editor at runtime, click the Personalize icon in the page toolbar. The following is
a screenshot of the Personalization Editor.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 62

The Personalization Editor allows you to perform the following activities:

 Add or remove UIBBs to sections (you can drag and drop UIBBs that are listed in
the section Currently Not Displayed Assignment Blocks onto a section)

 Change the number of columns within a section using the Layout Type dropdown list

 Determine whether UIBBs in a section column should be stacked

 You can stack multiple UIBBs inside a panel on top of each other; the UIBBs are
displayed as part of a tab strip in the panel header. To do this, press the toggle
button Stackable on the respective section column table.

When the application is run in administration mode (URL parameter: SAP-CONFIG-MODE=X), the

personalization settings are valid for all end-users who do not have their own individual settings. Choosing
the Reset to Default button in end-user mode restores the administrator personalization (if it exists); if there
is no administrator personalization, choosing Reset to Default restores the original configuration settings.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 63

CAUTION.

Unexpected effects might occur if an application enables personalization but also performs dynamic changes

at runtime via the OVP CNR API IF_FPM_CNR_OVP or the OVP Application Controller API IF_FPM_OVP.

The interaction of personalization and dynamic changes might become apparent on the screen when the
end-user resets the personalization settings for an OVP page. During such a reset, the personalization
settings of the page will be deleted and the state of the initial page configuration plus the performed API
changes will be restored. The reason for the latter is that the API changes should not get lost during the
reset (which was a basic requirement when the personalization functionality was developed). Whereas
dynamic changes at runtime, that are independent of personalization data, should not be a problem, a
conflict might arise in the case of dynamic API changes that have been performed on personalized data. In
this case, the reset might lead to unexpected results. It is the responsibility of the application to avoid such
situations.

Be aware that the dynamic changes at runtime are not directly stored in the personalization settings as this is
not an action performed by the end-user. However, dynamic changes might have an effect on the page
layout which the end-user can personalize afterwards. In this case, the complete current layout of the page is
stored in the personalization settings, including the changes that were made dynamically.

Toolbars

In total, there are three different kinds of toolbars in an OVP configuration:

 Global toolbars (Page Header toolbar)

 Assignment Block toolbars (UIBB toolbar)

 Page Master toolbars

You can define buttons, toggle buttons, and button choices for each kind of toolbar in the Toolbar Schema of
the configuration editor.

However, there is an additional method for assignment blocks and page master toolbars. If the UIBB, on
which the assignment block or the page master is based, exposes actions at runtime (for example when the
UIBB is based on a generic UIBB and the list of actions is provided by the feeder class), you can select the
Capture Actions attribute for the toolbar in the configuration editor. FPM then uses the UIBB-API to
determine the available toolbar actions at runtime and the resulting buttons are added to the panel header
toolbar alongside the configured buttons.

External Navigation Menus

As with the OIF and GAF, the OVP supports navigation to external applications from the runtime UI through
the use of a launchpad. Currently, the following links are available for the floorplans:

 You Can Also

 Related Links

The names are defined by the UI guidelines. You can configure both links in the configuration editor.
Technically, they are identical. However, they can be configured with a different parameter set. In contrast to
the OIF and GAF, the OVP allows you to configure You Can Also and Related Links per single OVP page.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 64

During runtime, You Can Also and Related Links are rendered as left-aligned button-choices after the
standard and application-specific buttons, toggle buttons, and button choices in the page toolbar. This is
according to UI Guidelines 2.0. The menu items of the button-choices are the entries that are defined in the
Customizing for the respective launchpad (transaction LPD_CUST).

In addition to the static configuration, the OVP provides the possibility to get, add, change, and remove the

external navigation data during runtime. For this, the interface IF_FPM_CNR_OVP offers the following

methods:

 GET_EXTERNAL_NAVIGATIONS

 ADD_EXTERNAL_NAVIGATION

 CHANGE_EXTERNAL_NAVIGATION

 REMOVE_EXTERNAL_NAVIGATION

The methods can be called from feeder classes, application-specific UIBBs or application configuration

controllers. An interface reference of IF_FPM_CNR_OVP can be retrieved via the FPM service manager in

the following way:

DATA: lo_fpm TYPE REF TO if_fpm,

lo_fpm_cnr_ovp TYPE REF TO if_fpm_cnr_ovp.

* Get reference to FPM OVP CNR API

lo_fpm = cl_fpm_factory=>get_instance().

lo_fpm_cnr_ovp ?= lo_fpm->get_service(cl_fpm_service_manager=>gc_key_cnr_ovp).

The above methods are also available for the interface IF_FPM_OVP. They can be called in method

OVERRIDE_EVENT_OVP of an OVP application configuration controller using the object reference that is

passed to this method.

Default Actions

The OVP allows the definition of default actions, that is, of an action that is triggered automatically when the
Enter key is pressed. Such a default action can, but need not, be related to a button element (normal button,
toggle button, or button-choice). An example of where a button-related default action makes sense is an
Initial Page with a Continue button that should automatically be triggered on pressing Enter.

Default actions that are related to a button element can be defined by selecting the entry Enter as a hotkey for
the corresponding button element. This can be done in the configuration editor at design time, or by using
the OVP CNR API or the OVP Application Configuration Controller API at runtime. Note that only one button
element on a page can have the hotkey Enter. This is ensured by the configuration editor as well as by the
runtime APIs.

Default actions that are not related to a button element can be defined by specifying an FPM event on page
level, or technically speaking, on the 'Content Area' level. This can also be done in the configuration editor at
design time or by using the runtime APIs of the OVP.

If both a default action related to a button element and a default action that is not related to a button element
are defined on a page, the default action that is related to the button element has the higher priority; on Enter,
the action of the button element is triggered, not the action that is defined on the page level.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 65

Edit / Display Mode

According to UI guidelines there is an explicit edit and display mode for an overview page, the behavior of
which should be the following:

 Normally, an overview page opens in display mode. This means all assignment
blocks show their data read-only and there are no editable fields. The buttons Save
and Cancel in the page toolbar are disabled. An Edit button in the assignment block
title bar offers the possibility to change the data of this assignment block. A central
Edit button in the page toolbar of the overview page (optional) changes all
assignment blocks to edit mode. If one or several assignment blocks of the
overview page are in edit mode, the Save and Cancel buttons in the page toolbar are
enabled.

 After pressing the Edit button of an assignment block, the application normally
switches to edit mode in-place and gives the user the possibility to edit the data.
The Edit button is disabled when the assignment block is in edit mode. An
assignment block that was switched to edit mode stays in this mode until the user
clicks Save (saving all changes in all assignment blocks) or Cancel (discarding all
changes in all assignment blocks) in the page toolbar. A save or cancel event sets
all assignment blocks on the overview page back to display mode (if the overview
page has a display mode).

You can enable an explicit edit and display mode in an Overview Page using one of the following ways:

 In the General Settings of the OVP floorplan configuration

 Using the application parameter FPM_EDIT_MODE

 Using the URL parameter FPM_EDIT_MODE

The first alternative has the lowest priority whereas the last one has the highest. This means that the
application parameter overrules the configuration setting whereas the URL parameter overrules both the
application parameter and the configuration setting.

Currently, the following values are supported:

 „ „: No Mode Handling (default)

 „E‟: Edit

 „R‟: Read-Only

For the value No Mode Handling (the default setting), no special logic is processed by the FPM regarding
display or edit mode. This means that the application behaves in the same way it did before this feature was
introduced. There is no automatic enablement or disablement of Edit, Save or Cancel buttons done by the
FPM. The UIBBs do not receive information about their current edit mode state.

For the value Read-Only the application starts at runtime displaying all UIBBs as read-only ,whereas for the
value Edit, the application starts at runtime displaying all UIBBs in edit mode; the latter is typically used for

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 66

'create' scenarios. There is an automatic enablement or disablement of Edit, Save or Cancel buttons done by
the FPM. All GUIBBs receive information about their current edit mode state through the importing parameter

IV_EDIT_MODE of method GET_DATA of the respective feeder interface. All free-style UIBBs can access

information about their current edit mode through method GET_UIBB_EDIT_MODE of the FPM runtime

interface IF_FPM.

If the edit and display mode is used in an application a local Edit button can be configured in the UIBB

toolbar. This button must trigger the FPM event FPM_LOCAL_EDIT. If this button is pressed at runtime the

UIBB is transferred into edit mode and is no longer read-only and the button will be automatically disabled. In

the global toolbar, Save, Cancel and Edit buttons can be configured with the FPM events FPM_SAVE,

FPM_CANCEL, and FPM_EDIT, respectively. FPM_SAVE and FPM_CANCEL transfer the application globally

into display mode, that is, no UIBB stays in edit mode. FPM_EDIT transfers the application globally into edit

mode, that is, all UIBBs are transferred into edit mode. In global edit mode, the global edit mode button and
all local edit mode buttons are disabled. In global display mode, the global save and cancel buttons are
displayed.

As well as the Edit button there are also other buttons allowed for a UIBB that transfer the UIBB directly into
local edit mode. One example is an Add button for lists. To enable automatic switching of a GUIBB into local

edit mode when such a button is pressed, a new indicator IS_IMPLICIT_EDIT is available in the structure

FPMGB_S_ACTIONDEF which is used in the feeder class method GET_DEFINITION for defining non-

exposable or exposable feeder class actions. To enable switching of an application-specific UIBB into local
edit mode when pressing an application-specific button, two cases have to be distinguished: for exposable

actions, the structure FPMGB_S_ACTIONDEF is used again for the action definition and therefore the indicator

IS_IMPLICIT_EDIT is available; for non-exposable actions, a new attribute can be set at the FPM event of

the button in order to enforce switching to the edit mode. This attribute is defined in class CL_FPM_EVENT

and its name is MV_IS_IMPLICIT_EDIT.

Important Precondition:

The UIBBs in the configuration must support edit mode, that is, they need to react appropriately on their
current edit mode state.

Processing Mode for Collapsed UIBBs ('Lazy Load')

Broadly speaking, this feature allows you to determine whether collapsed UIBBs should be immediately
instantiated (and take part in the FPM event loop) when they are visible on the page, independent of their
collapsed/expanded state, or whether the UIBBs should be instantiated in a 'lazy' manner and take part in
the FPM event loop only if they are wire sources or after they become visible and expanded.

The processing mode is specified at application level, not at individual UIBB level.

You can set the processing mode in the following ways:

 In the General Settings of the OVP configuration

 Using the application parameter FPM_COLLAPSED_UIBB_PROC_MODE

 Using the URL parameter FPM_COLLAPSED_UIBB_PROC_MODE

Alternative 1 has the lowest priority, alternative 3 has the highest. This means that the application parameter
overrules the configuration setting whereas the URL parameter overrules both the application parameter and
the configuration setting.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 67

Currently, the following values are supported for the processing mode:

 „ „ – Participate (in FPM Event Loop) (Default)
UIBBs which are visible on the page are taken into account during the FPM event
loop. The UIBBs are instantiated by the FPM runtime immediately when they are
visible on the page. The instantiation of the UIBB and their participation in the FPM
event loop is independent of the collapsed/expanded state of the UIBBs.

 „D‟ – Defer Participation (in FPM Event Loop; Lazy Instantiation)
Collapsed UIBBs which are visible on the page are not taken into account during
the FPM event loop unless they are wire sources or Composite UIBBs that contain
UIBBs that are wire sources. They are instantiated 'lazy' which means that they are
instantiated only after they have been expanded. Note that Composite UIBBs must
be instantiated before they have been expanded in order to determine which UIBBs
they contain.

For FPM applications using wiring, the FPM runtime automatically prevents 'lazy loading' for UIBBs which are
declared as wire sources, that is, if a UIBB is a wire source it will be instantiated and take part in the FPM
event loop even if it is in a collapsed state. This technique ensures that lazy loading spoils the logical
dependencies between UIBBs. Note, however, that wiring is the only declarative dependency definition
known to the FPM runtime. If there are dependencies explicitly hard-coded in application UIBBs, feeder
classes, or application controllers, and so on, application development is responsible to ensure that correct
application behavior is not spoiled by lazy loading.

WARNING.

The use of the processing mode for collapsed UIBBs with values other than the default value is critical since
not all UIBBs are prepared to be instantiated and to take part in the FPM event loop only if they are visible
and expanded or if they are a wire source. For example, if there is coding in a UIBB that reacts on the FPM

event FPM_START, the processing mode D should not be used. Collapsed UIBBs on the page (and which are

not wire sources) would not be processed during this start event and the specific logic for the start event
would not be executed.

Technical UIBBs

Application areas in the Business Suite may use a kind of generic controller UIBB that never has a screen
presence but must participate in the FPM event loop to fulfill its controller functionality.The Technical UIBBs
feature allows you to define a UIBB that is never shown on the user interface but that is processed in the
FPM event loop as a normal visible UIBB.

To specify a UIBB as a technical UIBB, select the value T (Hidden but Processed in Event Loop (Technical))
for the attribute Hidden Element of the UIBB in the configuration of the OVP Floorplan.

Initial Search Page & External Navigation

According to UI guidelines, an OVP application can have an initial page. An initial page is used if it is
necessary for an end-user to enter data before going to the main screen. The initial page can also be used to
present a table of objects (for example, recently used objects) that can be selected for further processing. In
particular, an initial page can contain a search and a search result list. A result list entry may contain one or
several links which, when clicked, enforce navigation to further details of the selected object. In addition, a
result list may offer a dedicated button that is intended for the creation of a new object.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 68

For example, an OVP application for purchase orders could have an initial screen that enables the end-user
to search for certain purchase orders. The purchase orders are then displayed in a result list below the
purchase order search criteria. This result list could contain a column showing the Purchase Order ID and
another column showing the Contact Name. Clicking the Purchase Order ID would trigger navigation to an
overview page for the purchase order details, whereas clicking the Contact Name would trigger navigation to
an overview page for contact details. Both overview pages, however, belong to different OVP applications. In
addition, the purchase order result list could offer a dedicated button that is intended for the creation of a new
purchase order. Clicking this button would restart the OVP with a different initial page.

Ideally, the navigation from an initial search page to the overview page of the same object would be done in-
place. In principle, this is no problem for the OVP floorplan. However, since there is no general in-place
navigation concept for SAP applications that are realized with different technologies, the current guidelines
prescribe to open a new application window whenever applications or reports are launched from the result
list of a search. In the OVP floorplan this kind of navigation is realized with the launchpad and suitable
launchpad customizing.

Technical Details:

1. When an OVP application is started, the standard FPM event FPM_START is

triggered. The target page is determined in the method GET_UIBBS_FOR_EVENT of the
OVP floorplan. This can either be a page of type „INIT‟ (Initial Screen), if there is
one, or a page of type „MAIN‟ (Main Overview Page).

The standard process of selecting the target page is as follows: The default initial
page will be the starting page. If there is no default initial page, any other initial page
is selected instead. If no initial page exists, the default main overview page is
selected as the target page. If no default main overview page exists, any other main
overview page is selected instead. If there is neither an initial page nor a main
overview page, an error message is shown.

There is the possibility to overrule the standard process. For this, an additional URL

parameter FPM_START_PAGE_ID or an application parameter FPM_START_PAGE_ID can
be specified (the URL parameter has the higher priority). The value of the
parameter must be a valid ID of an initial page or of a main overview page of an
OVP application. In this case, the OVP is started with the respective page.

To display a search page as the start page of an OVP application, the search page
has to be configured in the configuration editor as the default or the only initial
screen, or the application has to be started using the URL parameter or application

parameter FPM_START_PAGE_ID. The search page must contain a Search GUIBB as
well as its built-in result list or a List GUIBB.

2. When the user has executed the search on the initial search page, the result list is
shown. To enable the external navigation from the result list entries to an OVP
application, the result list has to contain at least one 'link' column. For 'create'
scenarios, a dedicated button in the result list toolbar that triggers an external
navigation is also possible. Clicking a cell in a link column or the dedicated button

for 'create' scenarios must trigger the navigation event FPM_NAVIGATE. As a
minimum, the navigation event must be supplemented with suitable event
parameters that identify an application via launchpad customizing. The following

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 69

FPM DDIC structures have been created to support the maintenance of the
navigation event parameters in the configuration editor:

FPM_S_EXTERNAL_NAVIGATION_KEY:

COMPONENT COMPONENT TYPE DATA

TYPE

LENGTH SHORT

DESCRIPTION

LPD_ROLE APB_LPD_ROLE CHAR 10 Role

LPD_INSTANCE APB_LPD_INSTANCE CHAR 32 Instance

LPD_APPLICATION_ALIAS APB_LPD_APPL_ALIA

S

STRING 0 Application

Alias

FPM_S_EXTERNAL_NAVIGATION_BASE:

COMPONENT COMPONENT TYPE DATA

TYPE

LENGTH SHORT

DESCRIPTION

.INCLUDE FPM_S_EXTERNAL_NA

VIGATION_KEY

 0 External

navigation

key

SOURCE_ATTRIBUTE_NAME FPM_SOURCE_ATTRIB

UTE

CHAR 30 Source

Attribute

FPM_S_EXTERNAL_NAVIGATION_INFO:

COMPONENT COMPONENT TYPE DATA

TYPE

LENGTH SHORT

DESCRIPTION

.INCLUDE FPM_S_EXTERNAL_NA

VIGATION_BASE

 0 External

navigation

base

information

INITIAL_PAGE_PROC_MODE FPM_INITIAL_PAGE_

PROC_MODE

CHAR 1 Processing

Mode of

Initial

Page

EDIT_MODE FPM_EDIT_MODE CHAR 1 Edit Mode

for OVP

Floorplan

START_PAGE_ID FPM_CONTENT_AREA_

ID

STRING 0 Start Page

of the OVP

Floorplan

DDIC structure FPM_S_EXTERNAL_NAVIGATION_KEY defines the general key for a
launchpad entry that allows starting an external application. This DDIC structure is

included in DDIC structure FPM_S_EXTERNAL_NAVIGATION_BASE which additionally

contains the field component SOURCE_ATTRIBUTE_NAME. When clicking a search result
list cell, this field may contain the name of an alternative list column that carries the
relevant object key that is required to process the initial search page in the

background. DDIC structure FPM_S_EXTERNAL_NAVIGATION_BASE is itself contained in

DDIC structure FPM_S_EXTERNAL_NAVIGATION_INFO. This structure offers three more

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 70

field components, INITIAL_PAGE_PROC_MODE, EDIT_MODE, and START_PAGE_ID. The
first one specifies the processing mode of the initial screen of the OVP application.
It is described below in more detail. The second field component specifies the edit
mode of the OVP application. The third field component specifies the page that
should be displayed when the OVP application is started. In particular, this field
component is relevant in 'create' scenarios.

To realize the navigation, the feeder class for the result list must expose the FPM

event FPM_NAVIGATE in its action definition. Additionally, a DDIC structure, which

includes the structure FPM_S_EXTERNAL_NAVIGATION_BASE, must be assigned as an
event parameter structure. In the configuration of the result list, a column can be
configured with display type Link to Action. Instead of the Standard Action default

action assignment, the feeder class action FPM_NAVIGATE should be configured. For

'create' scenarios, a button that is based on the feeder class action FPM_NAVIGATE
can be configured. As event parameters for the Link to Action or the button, the
launchpad key role and instance ID can be maintained as well as the processing
mode. If no launchpad key is maintained, a dynamic launchpad entry is created at
runtime restarting the current application configuration externally, that is, ex-place.
Using the processing mode of the initial screen, it is possible to execute the search
in the background, parameterized with the data from the selected result list entry
providing a unique result; the main overview page is opened, displaying the data for
this result.

To display details of a selected object, when navigating externally from an initial
search page result list of an OVP application to another (or the same) OVP
application, it must be ensured that the initial search page is not shown again but is
processed in the background instead. For 'create' scenarios, an appropriate page
must be displayed which allows data for the new object to be entered. The event
which is raised when clicking a navigation link in the search page result list or on the
dedicated button for the creation of new objects contains a special event parameter

INITIAL_PAGE_PROC_MODE. This parameter can have the following values:

 (Blank) – Normal
Everything works as if the OVP application is started new and without any
special logic

 E – Execute Search

The Search GUIBB triggers the FPM event FPM_EXECUTE_SEARCH in PBO in order
to execute the search automatically in the background. The required search
parameters are derived from the URL before the search is executed. However,
no further navigation is triggered.

 L – Execute Search & Leave

The Search GUIBB triggers the FPM event FPM_EXECUTE_SEARCH in PBO.

However, afterwards, the standard FPM event FPM_LEAVE_INITIAL_SCREEN is
also triggered. It is expected that the search execution provides a unique search
result. As a consequence, the OVP will no longer show the initial search page
but navigate directly to the (default) main overview page. Alternatively, the target

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 71

page can be specified directly in the FPM event LEAVE_INITIAL_SCREEN using the

event parameter TARGET_CONTENT_AREA.

 C – Create
The OVP is started new. However, the event parameter START_PAGE_ID is taken
into account and enables the OVP to start directly with the specified page. This
is required for „create‟ scenarios in which a page other than the initial search
page must be displayed.

3. Field content of the clicked link will be transported to the externally launched
application as a URL parameter; the value is taken from the list cell which raised the
event. However, if a different component name was specified in the field

SOURCE_ATTRIBUTE_NAME, the content of this field is transmitted instead.

The name of the corresponding URL parameter is

FPM_NAVI_SOURCE_KEY_ATTR_<component_name>. If the processing mode is set in the
configuration, the search is automatically executed with the parameter having the
same name as the component name of the result list. If the component name in the
search is different from the result list, a parameter mapping in the launchpad
configuration needs to be defined (and hence, navigation via a static launchpad
entry is mandatory). The result list feeder class needs to make sure that it transfers

the first record to the main page content when the FPM_LEAVE_INITIAL_SCREEN event
is triggered in the background processing.

EXAMPLE.

 A search for purchase orders has a component PO_ID in the search attributes and

search result list. The result list feeder class exposes the event FPM_NAVIGATE with

the event parameter structure FPM_S_EXTERNAL_NAVIGATION_INFO. All that application

development must do is to choose the display type Link to Action for component PO_ID

and to assign the FPM event FPM_NAVIGATE in the result list configuration. In the

event parameters, the field INITIAL_PAGE_PROC_MODE has to be set to L (Execute

Search & Leave).

If more than one key field is required for a unique search result, the single field

component SOURCE_ATTRIBUTE_NAME in the FPM_S_EXTERNAL_NAVIGATION_INFO
structure is not sufficient. In this case, the application can include the structure

FPM_S_EXTERNAL_NAVIGATION_INFO into an application-specific structure containing
additional field components for the key information. The additional field component
names should begin with „SOURCE_ATTRIBUTE_NAME‟. Alternatively, if five field
components for the key information are required, the FPM DDIC structure

FPM_S_EXT_NAVIGATION_INFO_ADD5 may be used.

OVP-Related FPM Events for Navigation

Navigation between the various OVP pages is controlled by dedicated FPM events. These FPM events can
either be raised by configured button elements, by button elements that are created at runtime using the
runtime APIs of the OVP, or by being simply programmed in the application.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 72

The following FPM events are relevant for enabling navigation between OVP pages:

Event ID (to be entered in
configuration editor)

Description

FPM_BACK_TO_MAIN Leave edit page and navigate back to last main
overview page (without saving the data).

FPM_CALL_FULL_SCREEN Navigate to edit page. If the edit page marked as
Default in configuration is not the desired one, the
target edit page can be specified with the property
Target Page in configuration.

FPM_CALL_DEFAULT_EDIT_PAGE Navigate to UIBB default edit page specified with the
property Default Edit Page on the UIBB.

FPM_CALL_SUBOVERVIEW_PAGE Navigate from main overview to sub-overview page.
If the sub-overview page marked as Default in
configuration is not the desired one, the target sub-
overview page can be specified with the property
Target Page in configuration.

FPM_CHANGE_CONTENT_AREA Navigate to a particular page specified with the
property Target Page in configuration.

FPM_CLOSE_DIALOG Close FPM dialog box. This event is raised
automatically by the standard buttons on the FPM
dialog box.

FPM_ DELETE_CURRENT_OBJECT Navigate to confirmation page. If the confirmation
page marked as Default in configuration is not the
desired one, the target confirmation page can be
specified with the property Target Page in
configuration.

FPM_DONE_AND_BACK_TO_MAIN Leave edit page and navigate back to last main
overview page (without saving the data).

FPM_LEAVE_INITIAL_SCREEN Leave initial screen and navigate to main overview
page. If the main overview page marked as Default in
configuration is not the desired one, the target main
overview page can be specified with the property
Target Page in configuration.

FPM_OPEN_DIALOG Open the FPM dialog box specified with the property
Target Page in configuration and

FPM_SAVE_AND_BACK_TO_MAIN Transactional event. Leave edit page and navigate
back to last main overview page.

FPM_START Start event of every FPM application. Navigate to
initial page (if it exists) or otherwise to main
overview page.

Special FPM Event Parameters

A Sub-Overview Page or an Edit Page may have the buttons Previous and Next in their page toolbar for
scrolling through various items in an item list.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 73

If the currently displayed item on such a page is the first item in the item list, Previous must be disabled; if it
is the last item in the item list, Next must be disabled. The OVP runtime can control the properties of the
Previous and Next buttons automatically. However, in order to do so, the OVP runtime must know two things
at the point of navigation to the Sub-Overview Page or the Edit Page: the total number of items in the item
list and the index of the currently selected item.

This information can be passed to the OVP via the following new FPM event parameters:

 FPM_ITEM_LIST_TOTAL_ROWS
Specifies the total number of items in the item list

 FPM_ITEM_LIST_SELECTED_ROW
Specifies the index of the currently selected item

The parameters can be set on all OVP navigation events that trigger navigation to a Sub-Overview or Edit
Page. These are as follows:

 FPM_CALL_FULL_SCREEN

 FPM_CALL_DEFAULT_EDIT_PAGE

 FPM_CALL_SUBOVERVIEW_PAGE

 FPM_CHANGE_CONTENT_AREA

When using these parameters, the OVP runtime enables or disables the Previous and Next buttons
depending on the index of the currently selected item. The index is automatically decreased when the FPM

event FPM_PREVIOUS_OBJECT is triggered (which happens when the Previous button is pressed) and

increased when the FPM event FPM_NEXT_OBJECT is triggered (which happens when the Next button is

pressed).

Dynamic Changes at Runtime

You can use the following APIs to apply dynamic changes at runtime:

 OVP CNR API (similar to that of the OIF and GAF)
Use this interface to perform changes to:

o Toolbar buttons
o Simple page, UIBB, page master area, or page master UIBB properties
o External navigation menus
o Basic application parameters
o Page selector

 OVP Application Configuration Controller (AppCC) API
Use this interface to get complete access to the OVP including the page
composition and layout.

Further details for both these methods are described below.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 74

OVP CNR API

The interface IF_FPM_CNR_OVP provides the following methods:

Method Description

GET_CONTENT_AREAS Provides a list of all content areas currently available

GET_CURRENT_CONTENT_AREA Gets the current content area

CHANGE_CONTENT_AREA_RESTRICTED Changes some restricted attributes of a content area

GET_SECTIONS Provides a list of all sections of a content area

GET_UIBBS Provides a list of UIBBs for a content area/ section

CHANGE_UIBB_RESTRICTED Changes some restricted attributes of a UIBB

GET_PAGE_MASTER_AREA Gets the page master area of a content area

CHANGE_PAGE_MASTER_AREA_REST Changes some restricted attributes of a page master area

GET_PAGE_MASTER_UIBBS Provides a list of page master UIBBs of a content area

CHANGE_PAGE_MASTER_UIBB_REST Changes some restricted attributes of a page master
UIBB

GET_EXTERNAL_NAVIGATIONS Gets a list of external navigation menus

ADD_EXTERNAL_NAVIGATION Adds a new external navigation menu

CHANGE_EXTERNAL_NAVIGATION Changes an existing external navigation menu

REMOVE_EXTERNAL_NAVIGATION Removes an external navigation menu

GET_TOOLBAR_ELEMENTS Gets a list of existing toolbar elements

GET_TOOLBAR_BUTTON Gets attributes of a toolbar button

GET_TOOLBAR_TOGGLE_BUTTON Gets attributes of a toolbar toggle button

GET_TOOLBAR_BUTTON_CHOICE Gets attributes of a toolbar button-choice

ADD_TOOLBAR_BUTTON Adds an existing toolbar button

ADD_TOOLBAR_TOGGLE_BUTTON Adds an existing toolbar toggle button

ADD_TOOLBAR_BUTTON_CHOICE Adds an existing toolbar button-choice

CHANGE_TOOLBAR_BUTTON Changes an existing toolbar button

CHANGE_TOOLBAR_TOGGLE_BUTTON Changes an existing toolbar toggle button

CHANGE_TOOLBAR_BUTTON_CHOICE Changes an existing toolbar button-choice

REMOVE_TOOLBAR_ELEMENT Removes a toolbar element

GET_DEFAULT_ACTION Gets the default action of a content area

ADD_DEFAULT_ACTION Adds the default action to a content area

CHANGE_DEFAULT_ACTION Changes the default action of a content area

REMOVE_DEFAULT_ACTION Removes the default action of a content area

GET_APPLICATION_PARAMETERS Gets the application parameters

CHANGE_APPLICATION_PARAMETERS Changes the application parameters

GET_PAGE_SELECTOR Gets the page selector dropdown list label & entries

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 75

CHANGE_PAGE_SELECTOR Changes the page selector dropdown list label & entries

SET_GENERIC_BUTTON_ACTION_TYPE Sets the action type of the generic OVP buttons

SET_SIDE_PANEL_LINK Defines the side panel link

SET_TAG_VALUE Sets a value for a tag

Application Configuration Controller API

An application WD component or an ABAP class that should act as an application controller can implement

the interface IF_FPM_OVP_CONF_EXIT. Its method OVERRIDE_EVENT_OVP passes a reference to the OVP

interface of IF_FPM_OVP to the application which provides full runtime access to the OVP floorplan,

including the page composition and layout. The interface IF_FPM_OVP provides the following methods:

Method Description

GET_CONTENT_AREAS Provides a list of all content areas currently available

GET_CURRENT_CONTENT_AREA Gets the current content area

ADD_CONTENT_AREA Adds a new content area to the application

CHANGE_CONTENT_AREA Changes an existing content area

REMOVE_CONTENT_AREA Removes an existing content area

GET_SECTIONS Provide a list of all sections of a content area

ADD_SECTION Adds a new section to a content area

CHANGE_SECTION Changes an existing content area section

REMOVE_SECTION Removes an existing content area section

GET_UIBBS Provides a list of UIBBs for a content area

ADD_UIBB Adds a UIBB to an existing content area/ section

CHANGE_UIBB Changes an existing UIBB

REMOVE_UIBB Removes an existing UIBB

GET_PAGE_MASTER_AREA Gets attributes of the page master area

ADD_PAGE_MASTER_AREA Adds a new page master area to a content area

CHANGE_PAGE_MASTER_AREA Changes an existing page master area

REMOVE_PAGE_MASTER_AREA Removes an existing page master area from a content
area

GET_PAGE_MASTER_UIBBS Provides a list of page master UIBBs for a content area

ADD_PAGE_MASTER_UIBB Adds a new page master UIBB to a content area

CHANGE_PAGE_MASTER_UIBB Changes an existing page master UIBB to a content area

REMOVE_PAGE_MASTER_UIBB Removes an existing page master UIBB from a content
area

GET_EXTERNAL_NAVIGATIONS Gets a list of external navigation menus

ADD_EXTERNAL_NAVIGATION Adds a new external navigation menu

CHANGE_EXTERNAL_NAVIGATION Changes an existing external navigation menu

REMOVE_EXTERNAL_NAVIGATION Removes an external navigation menu

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 76

GET_TOOLBAR_ELEMENTS Gets a list of existing toolbar elements

GET_TOOLBAR_BUTTON Gets attributes of a toolbar button

GET_TOOLBAR_TOGGLE_BUTTON Gets attributes of a toolbar toggle button

GET_TOOLBAR_BUTTON_CHOICE Gets attributes of a toolbar button-choice

ADD_TOOLBAR_BUTTON Adds an existing toolbar button

ADD_TOOLBAR_TOGGLE_BUTTON Adds an existing toolbar toggle button

ADD_TOOLBAR_BUTTON_CHOICE Adds an existing toolbar button-choice

CHANGE_TOOLBAR_BUTTON Changes an existing toolbar button

CHANGE_TOOLBAR_TOGGLE_BUTTON Changes an existing toolbar toggle button

CHANGE_TOOLBAR_BUTTON_CHOICE Changes an existing toolbar button choice

REMOVE_TOOLBAR_ELEMENT Removes a toolbar element

GET_DEFAULT_ACTION Gets the default action of a content area

ADD_DEFAULT_ACTION Adds the default action to a content area

CHANGE_DEFAULT_ACTION Changes the default action of a content area

REMOVE_DEFAULT_ACTION Removes the default action of a content area

GET_APPLICATION_PARAMETERS Gets the application parameters

CHANGE_APPLICATION_PARAMETERS Changes the application parameters

GET_PAGE_SELECTOR Gets the page selector dropdown list label & entries

CHANGE_PAGE_SELECTOR Changes the page selector dropdown list label & entries

SET_GENERIC_BUTTON_ACTION_TYPE Sets the action type of the generic OVP buttons

GET_EVENT Gets the current FPM event

SET_EVENT Sets or changes the current FPM event

IS_EVENT_CANCELLED Returns whether the current FPM event is cancelled

CANCEL_EVENT Cancels event processing

IF_FPM_WIRE_MODEL~ADD_WIRE Adds a wire between two existing UIBBs

(parameter IV_VARIANT_ID is ignored in OVP)

IF_FPM_WIRE_MODEL~REMOVE_WIRE Removes a wire between two UIBBs

(parameter IV_VARIANT_ID is ignored in OVP)

IF_FPM_WIRE_MODEL~GET_WIRES Gets a list of all existing wires between UIBBS

(parameter IV_VARIANT_ID is ignored in OVP)

Setting a Default ALV View for a Freestyle UIBB

When you embed freestyle UIBBs into an FPM application, you can select the default ALV view which will be
displayed when the freestyle UIBB is launched during runtime.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 77

Design Time Settings in the FPM Configuration Editor

To select the default ALV views, complete the following steps:

1. Implement the marker WD interface IF_FPM_CFG_CONF_ALV_USAGE in the freestyle

UIBB which has a usage on the WD component SALV_WD_TABLE.
2. Open FLUID and add this freestyle UIBB to your floorplan.
3. In the object schema tab, choose the row containing the UIBB to display its

attributes.

4. The table Configurable ALV Tables, is displayed.
5. In this table, use the field help to enter one ALV view for each usage on the WD

component SALV_WD_TABLE.

Note that this feature is restricted to those ALV views that have been created previously on the

configuration level. To do this, you must run the FPM application with the URL parameter SAP-CONFIG-

MODE = CONFIG and create the views using the ALV Settings dialog box.

Rendering the ALV Views during Runtime

The selected ALV view is not automatically applied to the usage on the WD component SALV_WD_TABLE in

your freestyle UIBB. Instead, you must instantiate the usage on the WD component SALV_WD_TABLE with

the corresponding ALV configuration key.

To do this, apply the ALV configuration keys in the method WDDOINIT of your freestyle UIBB with the

following code:

method wddoinit .
 data lo_cmp_usage type ref to if_wd_component_usage.
 data lo_fpm type ref to cl_fpm.
 data lt_conf_comp_usage type fpm_t_uibb_conf_comp_usage.
 data ls_conf_comp_usage type fpm_s_uibb_conf_comp_usage.
 data lv_component_name type wdy_component_name.
 data ls_config_key type wdy_config_key.

* get name of freestyle UIBB
 lv_component_name = wd_this->wd_get_api()->get_component_info()->get_name().

* get tree of configurable ALV usages
 lo_fpm ?= cl_fpm_factory=>get_instance().
 lt_conf_comp_usage =
 lo_fpm->if_fpm~mo_conf_comp_usage-

>get_conf_comp_usage_tree(iv_component_name = lv_component_name).

* pick one configuration key from tree
 read table lt_conf_comp_usage into ls_conf_comp_usage with key child_component_usage_name
 = 'ALV'.
 move-corresponding ls_conf_comp_usage to ls_config_key.

* pass configuration key to ALV usage
 lo_cmp_usage = wd_this->wd_cpuse_alv().
 if lo_cmp_usage->has_active_component() is initial.
 lo_cmp_usage->create_component(configuration_id = ls_config_key).
 endif.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 78

endmethod.

For more information on ALV views, see SAP List Viewer in Web Dynpro for ABAP in the SAP NetWeaver
Library.

FPM Dialog Boxes

FPM provides a framework for supporting dialog boxes. Dialog boxes are supported in all floorplans.

Structure

A dialog box is essentially a page in a floorplan, containing at least one UIBB (freestyle UIBBs or GUIBBs).

The CNR and IDR regions are not available in the FPM dialog boxes.

A dialog box is identified by a unique Dialog Box ID.

FPM supports up to three levels of dialog boxes (opening one dialog box from within another dialog box).

 Dialog boxes on levels 1 and 2 display any of the following button sets:

o Ok and Cancel
o Close
o No button

 Dialog boxes on level 3 display only the Close button. It is not possible to open
another FPM dialog box from a dialog box on level 3.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 79

Example of the 3 Levels of FPM Dialog Boxes

Features

Note the following features of FPM dialog boxes:

 Provision of two buttons OK and Cancel with default actions
The dialog box buttons are handled by FPM itself.

 Support for all UIBB types
This means UIBBs can have application-specific buttons. Any buttons specific to the
UIBB are defined and handled by the UIBB and are embedded within the UIBB (see
following screenshot).

 Own message area and message handling
FPM dialog boxes allow you to raise local and global messages. For more
information see Message Manager in Dialog Boxes.

 Configurable Layout and Button Texts

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 80

FPM dialog boxes can have one or more UIBBs and their layout can be configured.
For more information see Configuring FPM Dialog Boxes.

 Error Page
The FPM error page can be triggered in FPM dialog boxes. For more information
see FPM Error page in Dialog Boxes.

 Navigation
FPM dialog boxes support navigation to URLs and Web Dynpro applications.
Suspend and Resume navigation is also supported. The navigation with dialog
boxes is configured similar to that of the main screen.

 Data-Loss Handing
FPM dialog boxes support usage of data-loss dialog boxes. Any UIBBs configured
in an FPM dialog box can raise a data-loss dialog box. This data-loss dialog box is
handled in the event loop.

 Events

Applications can raise FPM events like FPM_SAVE, FPM_NEW, FPM_REFRESH, and so on
and application-specific events in FPM dialog boxes.

FPM dialog boxes can be opened from the application toolbar. The toolbar button is
configured with the dialog event ID. The toolbar properties can be used to maintain
the FPM event ID and the event parameters to open the dialog box. For more
information see, Configuring

 Data Transfer
FPM dialog boxes support data transfer across dialog boxes through event data.

 Enablement of Dialog Box Buttons
FPM dialog boxes support enabling and disabling of buttons (except the Cancel
Button) at runtime.

Creating and Configuring an FPM Dialog Box

You create a dialog box in the same way that you create other pages in a floorplan component configuration.

The following procedure assumes you have already created your UIBB component configurations.

Create and configure FPM dialog boxes in the FPM configuration editor, FLUID, as follows:

1. On the Navigation tab, add a new page of type Dialog Box.

2. Choose the Attributes button on the main toolbar to display the attributes of this new

page.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 81

3. Enter an ID and name for the dialog box page.

4. On the <Floorplan> Schema tab, choose Add UIBB.

5. Choose the type of UIBB which you want to add to your dialog box and enter the
following information:

 Component

 Window Name

 Configuration Name

6. Add further UIBBs if necessary using the Add UIBB button.

7. To make changes to any of the following attributes of the dialog box, choose the
dialog box on the Navigation page and edit the relevant attributes:

 Title

 Layout of UIBBs

 Size

 Tooltip texts for the various buttons in the dialog box

 Alternative texts for the various buttons in the dialog box

Note that you can create multiple dialog boxes in a single application.

Triggering Dialog Boxes from a Toolbar Button

It is also possible to trigger dialog boxes by choosing a button in the toolbar. To do this, first create a button
in the toolbar and then provide an event ID for the button. Choose the Toolbar element on the Toolbar
Schema tab. In the Attributes panel, a table is shown in the configuration editor where the button event can

be associated with the event to open the dialog box OPEN_DIALOG_BOX. Pass the event parameter details

in the Maintain Event Parameters table. It is mandatory to pass the value for the event parameter

DIALOG_BOX_ID. In this manner, FPM determines which dialog box is opened when a particular toolbar

button is chosen.

Opening and Closing FPM Dialog Boxes

You open FPM dialog boxes using the following methods:

 IF_FPM API

The floorplan interface IF_FPM contains the method OPEN_DIALOG_BOX. The Dialog ID
must be passed to this API. The table below describes the method with its
parameters:

Method Name Parameters Description

OPEN_DIALOG_BOX IV_DIALOG_BOX_ID This method is used in the
application to open the

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 82

IS_DIALOG_BOX_PROPERTIES

(optional)

IO_EVENT_DATA (optional)

dialog box.

 FPM event

Raise the FPM event (FPM_OPEN_DIALOG) cl_fpm_event

=>gc_event_open_dialog_box.

The closing of FPM dialog boxes is handled by FPM itself; FPM triggers an event

(FPM_CLOSE_DIALOG) cl_fpm_event=>gc_event_close_dialog_box.

Event Processing in Dialog Boxes

All the UIBB types that can be used in the main screen can also be used in FPM dialog boxes. FPM events
or any application-specific events can be handled in the FPM dialog boxes.

The MV_IS_DIALOG_MODE Attribute

The IF_FPM~MV_IS_DIALOG_MODE attribute provides information on the state of an application, whether it

is in a dialog screen or in a main screen. The application can read the state (OPENED or CLOSED) using
this attribute.

Attribute Name Type Description

MV_IS_DIALOG_MODE (Read

Only)

FPM_DIALOG_STATE Indicates whether application is in
dialog box or in main screen.

Sample Coding to Call A Dialog Box

Opening a Dialog Box using Direct API

DATA: lo_fpm TYPE REF TO if_fpm,
 lv_window_id TYPE fpm_dialog_window_id.

lv_window_id = ‘CONTENT_AREA_1’.
lo_fpm = cl_fpm_factory=>get_instance().
lo_fpm->open_dialog_box(EXPORTING
 iv_dialog_box_id = lv_window_id).

Opening a Dialog Box by Raising an FPM Event

DATA: lo_event_params TYPE REF TO if_fpm_parameter,
 lr_event TYPE REF TO cl_fpm_event,

lv_window_id TYPE fpm_dialog_window_id,
 lo_fpm TYPE REF TO if_fpm.

lv_window_id = ‘CONTENT_AREA_1’.
CREATE OBJECT lo_event_params type cl_fpm_parameter.
 lo_event_params->set_value(EXPORTING
 iv_key = if_fpm_constants=>gc_dialog_box-id
 iv_value = lv_window_id

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 83

).

 create OBJECT lr_event
 EXPORTING
 iv_event_id = cl_fpm_event=>GC_EVENT_OPEN_DIALOG_BOX
 io_event_data = lo_event_params.

lo_fpm = cl_fpm_factory=>get_instance().

 lo_fpm->raise_event(lr_event).

 Message Manager for FPM Dialog Boxes

FPM manages the message handling (regarding the parent component and the FPM dialog boxes) in terms
of Visibility and Lifetime of a message in FPM dialog boxes.

Lifetime/Visibility Message Behavior

Automatic FPM takes care of the visibility based on the UI guidelines. The Automatic
messages in an FPM dialog box are cleared after every roundtrip or if a new
message is raised on a dialog box.

On Dialog Close:

– Automatic messages are not carried forward to the parent, or the previous level
dialog box.

On Dialog Open:

 – Automatic messages are cleared on the parent window, or on parent dialog box
from where the dialog box is opened.

View The message is visible as long as the view to which the message is bound is
available,

On Dialog Close

 -Messages with MANU_VIEW lifetime are not carried to the parent or the parent

dialog box.

On Dialog Open:

Messages with MANU_VIEW lifetime reappear on the dialog box when it is

reopened until it is cleared manually.

These messages are not carried forward from parent window or the parent dialog
box on the dialog box.

Controller The message is visible as long as the controller that has raised the message is
available.

On Dialog Close:

Messages with MANU_CONT lifetime would be passed to the parent if it is raised

through the same controller.

On Dialog Open:

-Messages with MANU_CONT lifetime would be passed to the dialog box from the

parent window or the parent dialog if it is raised through the same controller.

Application The message is permanently displayed, in both the dialog box and the parent
window throughout the application until it is manually cleared by the application

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 84

developer.

Auto Pop-up Pop-up: the message is visible only in a message dialog box, until it is closed.

Error Page of an FPM Dialog Box

Navigation to an error page from dialog boxes is also possible at all levels of dialog boxes. If the application
encounters an error during dialog box processing and subsequently wants to navigate to an error page, it
can be done by calling the API of the error page. The main screen is replaced by the error page and the
dialog box is automatically closed. No further navigation is possible.

Enabling/Disabling Dialog Box Buttons at Runtime

Dialog box buttons can be enabled or disabled at runtime. The Cancel button cannot be disabled or enabled.

An API IF_FPM->SET_DIALOG_BUTTON_STATUS is provided to set the status of the dialog box button.

Sample Code to Set the Status of the Dialog Box button.

data: lv_button type wdr_popup_button.

lv_button = 7.

wd_comp_controller->lr_fpm->set_dialog_button_status(iv_button = lv_button

 iv_status = abap_true).

Note that lv_button is the value of the type of the button.

 FAQs on FPM Dialog Boxes

1. How do I open the dialog box using API?

The FPM dialog box can be opened by two methods; one is using API. Instantiate

FPM and call the method open_dialog_box exporting Dialog ID and the properties
from the Web Dynpro component.

2. How do I open the dialog box by raising events?
Set the event parameter Dialog ID. Instantiate cl_fpm_event with the event

parameters and the event name cl_fpm_event=>GC_EVENT_OPEN_DIALOG_BOX. Raise

the event using raise_event method.

3. Is it possible to raise an event in the dialog box? If so how do I handle these
events?
Yes. Any events can be handled in the event loop methods as it is handled in the
main screen.

4. How do I transfer data across dialog boxes?

Transfer data using the IO_EVENT_DATA parameter. Set the value to be transferred
and pass the value while opening another FPM dialog box.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 85

5. How does transient behavior work with FPM dialog boxes?
Transient behavior is enabled only when FPM dialog box is closing. The parent
screen of the FPM dialog box is not released even if transient behavior is switched
on. The dialog box component is released when it is closed. Switch ON and OFF of
transient behavior, whilst opening and closing of FPM dialog boxes, is handled by
FPM itself.

6. How can I find out the Dialog ID of the dialog box being closed?
During closing of dialog the Dialog ID of the dialog being closed is available in the
close dialog event. You can read the close dialog event to find the Dialog ID.

Generic User Interface Building Block (GUIBB)

You can use Floorplan Manager to compile application-specific views (UIBBs) from one or more applications
that were realized as Web Dynpro components into new Floorplan Manager applications. These views
generally include the majority of actual applications. Since the views were previously created using the Web
Dynpro ABAP foundation, there generally was a high level of variance in the display and navigational
behavior of the views. These views cannot be configured in Floorplan Manager.

By introducing generic user interface building blocks, Floorplan Manager has made it possible to improve the
uniformity of application-specific views. Generic user interface building blocks are design templates for
which, at design time, the application defines the data to be displayed along with a configuration. The
concrete display of the data on the user interface is not determined and generated by the GUIBB until
runtime. This is done automatically using the configuration provided.

Floorplan Manager provides the following generic user interface building blocks:

 Form components (WD component: FPM_FORM_UIBB_GL2 and FPM_FORM_UIBB

 List components (WD component: FPM_LIST_UIBB_ATS and FPM_LIST_UIBB)

 Hierarchical List (Tree) component (WD component: FPM_TREE_UIBB)

 Tabbed component (WD component: FPM_TABBED_UIBB)

 Search component (WD component: FPM_SEARCH_UIBB)

 Launchpad component (WD component: FPM_LAUNCHPAD_UIBB)

 POWL component (WD component: FPM_POWL_UIBB)

 Composite component (WD component: FPM_COMPOSITE_UIBB)

 FPM also provides other another type of special UIBB known as a Reuse UIBB (RUIBB) which provides not
only the layout of the UI but also the business logic. Details are provided in the section Reuse UIBBs.

Feeder Classes

A class that implements the IF_FPM_GUIBB_FORM interface (for form components), the

IF_FPM_GUIBB_LIST interface (for list components), or the IF_FPM_GUIBB_SEARCH interface (for search

components), and so on, and provides all necessary application-specific information to the GUIBB.

Structure

Using the GET_DEFINITION method, the class defines the field catalog of the component and supplies the

component at runtime with data from the application using the GET_DATA method.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 86

Features

Feeder class implementations are based on a predefined interface definition providing all necessary methods
and corresponding signatures in order to standardize the communication between the application and the
GUIBB.

This communication embraces the following:

 Application definition (for example data definition, structure or table definitions and
their technical aspects)

 Default layout information and corresponding field dependencies

 The (optional) action definition based on metadata

 The action/event handling and data forwarding to the underlying application model

Context Menus in GUIBBs

By implementing the interface IF_FPM_GUIBB_CTXT_MENU, Form, List and Tree feeder classes can

provide context menus.

This interface offers an additional event (PROCESS_CTXT_MENU) which is called after the user launches the

context menu and before the context menu is displayed. This event corresponds to the Web Dynpro event

WDDOONCONTEXTMENU.

Due to the pure dynamic nature of these context menus, the GUIBB context menu features are restricted
compared to what Web Dynpro itself offers: Menu checkboxes and radio buttons cannot be provided this
way.

Methods of IF_FPM_GUIBB_CTXT_MENU Interface

PROCESS_CTXT_MENU:

Allows the feeder to provide a context menu.

Parameter Description

IV_NAME Type NAME_KOMP. Contains the field name if the context menu is launched from a

place which can be related to a field from the field catalog. If this is not possible (for
example, when the context menu is launched from the list title or from a form‟s group
title) then IV_NAME is initial.

I_VALUE Type DATA. In form UIBBs it contains the field‟s value, in list UIBBs the complete row.
This parameter is initial when the context menu is launched from a place which is not
related to this data (for example, when launching the context menu in a list from a
column header IV_NAME will be filled, but I_VALUE will be empty).

IO_CTXT_MENU Type IF_FPM_CTXT_MENU. This interface is explained in detail below.

Methods of IF_FPM_ CTXT_MENU Interface

GET_DETAIL:

Gets the detail information for this context menu

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 87

Parameter Description

EV_ID Type FPM_CTXT_MENU_ID. Contains the unique ID of the context menu.

EV_TITLE Type FPM_CTXT_MENU_TITLE. Contains the title of the context menu. This title
is only visible when the context menu is used as submenu.

EV_IMAGE_SOURCE Type FPMGB_IMAGE_SRC. Provides the source of the image of the menu. This

image is only displayed when the context menu is used as a submenu.

ET_ITEM Type IF_FPM_CTXT_MENU=> TY_T_CTXT_MENU_ITEM. Provides a list of all
menu items.

GET_SUBMENU:

Returns a submenu

Parameter Description

IV_ID Type FPM_CTXT_MENU_ID. Specifies the ID of the context sub menu.

RO_SUBMENU Type IF_FPM_CTXT_MENU. Represents the submenu.

REMOVE_ITEM:

Removes the specified item from a context menu

Parameter Description

IV_ID Type FPM_CTXT_MENU_ID. Specifies the ID of the item to be removed.

ADD_ACTIONITEM:

Adds a new Action Item to the menu

Parameter Description

IV_TEXT The text of the new menu entry.

IV_FPM_EVENT_ID The FPM Event ID which will be raised when the user selects this action item.

IO_FPM_EVENT The FPM Event to be raised when the user selects this action item. Either
IV_FPM_EVENT_ID or IO_FPM_EVENT have to be provided. If both are
provided IV_FPM_EVENT_ID is ignored.

IV_IMAGE_SOURCE Provides the image source for the menu entry (optional).

IV_NEEDS_MORE_INFO Should be set when executing the action „additional information is required‟.
Another three points are listed after the text to display this information.

IV_INDEX Allows specification of the position of the new entry (optional: if left initial, entry is
appended to the end).

ADD_SUBMENU:

Creates and adds a new Submenu to the Context menu

Parameter Description

IV_TITLE The title of the new menu entry.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 88

IV_IMAGE_SOURCE Provides the image source for the new submenu (optional).

IV_INDEX Allows specification of the position of the new entry (optional: if left initial, entry
is appended to the end).

RO_SUBMENU The new submenu.

ADD_SEPARATOR:

Adds a new separator to the Context menu

Parameter Description

IV_INDEX Allows specification of the position of the separator (optional: if left initial, entry is
appended to the end).

Form Component (GUIBB FORM GL2)

This is a generic design template for displaying data in a form that is implemented using the Web Dynpro

component FPM_FORM_UIBB_GL2.

You use this design template in application-specific views (UIBB) where you want to display data using a
form. You can determine the concrete display of the data in a form when configuring the Web Dynpro

component FPM_FORM_UIBB_GL2.

Structure

A form is comprised of various sub objects:

 STANDARD ELEMENT
Elements are descriptor/field combinations that can be configured for the display
type of the field or descriptors.

 TOOLBAR (Button Row)
Contains buttons that can have actions assigned to them and can be executed in
the form.

 BUTTON
A single button that can have actions assigned to it and can be executed in the form

 GROUP
A group consists of group elements, and group toolbars. You can enter a separate
name for each group.

 GROUP ELEMENT
Group element with the same structure as the standard element

 GROUP BUTTON ROW
Button Row with the same structure as the Button Row (Toolbar)

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 89

 GROUP BUTTON
Button element with the same structure as the Button

The information that can be displayed on a form is determined by the feeder class assigned to the

configuration of the Web Dynpro component FPM_FORM_UIBB_GL2.

Integration

You can configure a form component using the configuration editor for Floorplan Manager, FLUID.

IF_FPM_GUIBB_FORM Interface

The following tables describe the methods (and their attributes) of the IF_FPM_GUIBB_FORM interface.

If your application does not need a particular method, implement an empty method, otherwise the system will
dump.

You must implement at least the following methods:

 GET_DEFINITION

 GET_DATA

Methods of IF_FPM_GUIBB_FORM Interface

GET_DEFINITION:

Allows the feeder to provide all necessary information for configuring a form: the list of available fields and
their properties and the list of actions (FPM events).

Parameter Description

EO_FIELD_CATALOG Is of type CL_ABAP_STRUCTDESCR. The components of this
object are the available fields. The simplest way to provide a field
catalog is to create a flat DDIC structure containing all fields and
then get the field catalog via

eo_field_catalog ?=

CL_ABAP_STRUCTDESCR=>describe_by_name(

<name>)

 The form GUIBB supports only flat structures. When using
deep structures, only the highest level fields are available.

ET_FIELD_DESCRIPTION Here you can provide the additional information needed to create
the form, for example Label_by_DDIC, LABEL_REF

ET_ACTION_DEFINITION A list of all actions (which will be transformed to FPM Events at
runtime) that you can assign to form elements.

ET_SPECIAL_GROUPS Here you have the same options that you have in the ABAP ALV
(see function module REUSE_ALV_GRID_DISPLAY) to group the
fields within your field catalogue. You must enter the special

file:///C:/hyperlink.sap.6C5632D4E79B4003B97C93946AD3AA29.BCO_COMMON

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 90

group for each field in the field description table in field
SP_GROUP. At design-time the FPM Configuration Editor groups

the fields. This is an easier way to find fields if your field catalogue
contains many fields.

GET_PARAMETER_LIST:

Called at design time and allows you to define a list of the parameters that the feeder class supports. This list
is used by the FPM Configuration Editor to provide the input fields for these parameters.

Parameter Description

RT_PARAMETER_DESCR Is returned from this method. It describes which
parameter is possible. In Field TYPE, the DDIC type
needs to be entered.

INITIALIZE:

Called at runtime when the form is created. It is the first feeder method which is called from FPM.

Parameter Description

IT_PARAMETER Contains a list of the feeder parameters and the
values for them specified in the configuration.

FLUSH:

The first feeder method which is called during an event loop. Whenever an FPM event is triggered (this
includes all round trips caused by the form itself) this method is called. Use it to forward changed form data
to other components in the same application.

Parameter Description

IT_CHANGE_LOG Lists all changes made by the user.

IS_DATA Is a structure containing the changed data

PROCESS_EVENT:

Called within the FPM event loop, it forwards the FPM PROCESS_EVENT to the feeder class. Here the event

processing can take place and this is where the event can be canceled or deferred.

Parameter Description

IO_EVENT The FPM event which is to be processed

EV_RESULT The result of the event processing. There are 3 possible
values:

ev_result =

if_fpm_constants=>gc_event_result-OK

ev_result =

if_fpm_constants=>gc_event_result-FAILED.

ev_result =

if_fpm_constants=>gc_event_result-DEFER

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 91

ET_MESSAGES A list of messages which shall be displayed in the
message region.

GET_DATA:

Called within the FPM event loop and forwards the FPM PROCESS_BEFORE_OUTPUT event to the feeder

class. Here you specify the form data after the event has been processed.

Parameter Description

IO_EVENT The FPM event which is to be processed.

IT_SELECTED_FIELDS The list of fields necessary for the form rendering.
Provide only the data for the fields listed in this table;
all other fields are neither visible at runtime nor used
as reference for visible fields.

ET_MESSAGES A list of messages which shall be displayed in the
message area.

EV_DATA_CHANGED For performance reasons, the GUIBB adjusts the
data in the form only if the data has been changed.
To indicate this, set this flag whenever you change
the data to be displayed within this feeder.

EV_FIELD_USAGE_CHANGED Indicates whether or not the field usage has been
changed by this method. If you change the field
usage without setting this flag to X, your changes are
ignored.

EV_ACTION_USAGE_CHANGD Indicates whether or not the action usage has been
changed. Use an X to indicate whether you changed
the action usage. If you do not, your changes are
ignored.

CS_DATA The form data to be changed.

CT_FIELD_USAGE Field usage to change. The field usage consists of
the field attributes which might change at runtime (for
example, enabled, and visible).

Note that if you change the fixed values of a field, set

the flag FIXED_VALUES_CHANGED for this field.

CT_ACTION_USAGE Action usage to change. The action usage consists
of the attributes related to actions which might
change at runtime. For example, visibility. If an action
is rendered as a button, then the visibility setting of
the button is defined here.

GET_DEFAULT_CONFIG:

Call this if you want to have a default configuration. Use it to call pre-configured form configurations when a
user starts the FPM Configuration Editor. This avoids the user, who uses a feeder class to create a form,
having to create it from the beginning.

Parameter Description

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 92

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_FORM_CONFIG: This object

provides the API to create a default configuration for
the “old” Form, is not used in
FPM_FORM_UIBB_GL2

IO_LAYOUT_CONFIG_GL2 Of type IF_FPM_GUIBB_FORM_CFG_GL2: This

object provides the API to create a default
configuration

CHECK_CONFIG:

Call this if you want to make your own application-specific checks on the configuration in the FPM
Configuration Editor immediately before saving.

Parameter Description

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_FORM_CONFIG: This object

provides the API to read the configuration to be
saved for the “old” Form, is not used in
FPM_FORM_UIBB_GL2.

ET_MESSAGES A list of messages which shall be displayed in the
message region.

IO_LAYOUT_CONFIG_GL2 Of type IF_FPM_GUIBB_FORM_CFG_GL2: This

object provides the API to read the configuration to
be saved

Using the CHECKBOX_GROUP Display Type in a Form

As of release SAP NetWeaver 7.0 enhancement package 2, the checkbox group display type is available. In
contrast to the other display types, the application has to ensure that everything works.

To use this field to full extent, consider the following:

 The field type must be of type Character and the field length needs to be at least the
number of checkboxes you expect.

 The values of the checkboxes need to be set as fixed values for the field.

Default values for a checkbox can be set in the field.

For example, mark the second checkbox field value = X.

Within the FLUSH method you get the data and the change log back.

In the field for the checkbox you see at the index of the field whether it is checked (Checked = X) or not
(Unchecked = Space).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 93

Remark on field length

As we set an X for the marked entry on the place in the field it is necessary to have the length at least as
long as much as you have values.

You have a field with length 10 and 10 fixed values. If you mark a checkbox this place will be X, checkbox 1

2 3 4 5 6 7 8 9 10. Let us presume all are marked. Within FLUSH method this field of the structure will be

updated XXXXXXXXXX. Let us presume the ninth field is not marked. Within FLUSH method this field of the

structure will be updated XXXXXXXX_X.

Let us presume the field would be of char10 and you have 12 fixed values. If you mark the twelfth checkbox
and want to return this information to the feeder class it does not work as you can only fill ten Xs in the field.

That is the reason why the field length should be at least equal to the numbers of fixed values.

 Group Layout in a Form

 8/1 Layout
The Form has 8 columns with names A to H. The element can be arranged in this
layout

 16/1 Layout
The form has 16 columns with names A to P. The element can be arranged on the
whole form.

 16/2 layout
The form has 16 columns which are separated into panels. Panel 1 column A to H,
Panel 2 column I to P. Elements can be put in the first or in the second panel. No
overlapping possible

Form Component (GUIBB FORM)

Note that this form component has been superseded by a new form component,
FPM_FORM_UIBB_GL2.

This is a generic design template for displaying data in a form that is implemented using the Web Dynpro

component FPM_FORM_UIBB.

You use this design template in application-specific views (UIBB) where you want to display data using a
form. You can determine the concrete display of the data in a form when configuring the Web Dynpro

component FPM_FORM_UIBB.

Structure

A FORM is comprised of various sub objects:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 94

 ELEMENT
Elements are descriptor/field combinations that can be configured for the display
type of the field or descriptors.

 MELTINGGROUP
A melting group is a group of multiple fields.

 TOOLBAR
Contains buttons that can have actions assigned to them and can be executed in
the form.

 GROUP
A group consists of elements, melting groups, and toolbars. You can enter a
separate name and group type for each group. The following group types are
possible:

o Full screen width with one column
o Full screen width with two columns
o Half screen width with one column

Only one element or melting group can be displayed per line in a column.

The information that can be displayed on a form is determined by the feeder class

assigned to the configuration of the Web Dynpro component FPM_FORM_UIBB.

Integration

You configure a form component using the configuration editor for Floorplan Manager, FLUID.

IF_FPM_GUIBB_FORM Interface

The following tables describe the methods (and their attributes) of the IF_FPM_GUIBB_FORM interface.

If your application does not need a particular method, implement an empty method, otherwise the system will
dump.

You must implement at least the following methods:

 GET_DEFINITION

 GET_DATA

Methods of IF_FPM_GUIBB_FORM Interface

file:///C:/hyperlink.sap.6C5632D4E79B4003B97C93946AD3AA29.BCO_COMMON

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 95

GET_DEFINITION:

Allows the feeder to provide all necessary information for configuring a form: the list of available fields and
their properties and the list of actions (FPM events).

Parameter Description

EO_FIELD_CATALOG Is of type CL_ABAP_STRUCTDESCR. The components of this
object are the available fields. The simplest way to provide a field
catalog is to create a flat DDIC structure containing all fields and
then get the field catalog via

eo_field_catalog ?=

CL_ABAP_STRUCTDESCR=>describe_by_name(

<name>)

 The form GUIBB supports only flat structures. When using
deep structures, only the highest level fields are available.

ET_FIELD_DESCRIPTION Here you can provide the additional information needed to create
the form, for example Label_by_DDIC, LABEL_REF

ET_ACTION_DEFINITION A list of all actions (which will be transformed to FPM Events at
runtime) that you can assign to form elements.

ET_SPECIAL_GROUPS Here you have the same options that you have in the ABAP ALV
(see function module REUSE_ALV_GRID_DISPLAY) to group the
fields within your field catalogue. You must enter the special
group for each field in the field description table in field
SP_GROUP. At design-time the FPM Configuration Editor groups
the fields. This is an easier way to find fields if your field catalogue
contains many fields.

GET_PARAMETER_LIST:

Called at design time and allows you to define a list of the parameters that the feeder class supports. This list
is used by the FPM Configuration Editor to provide the input fields for these parameters.

Parameter Description

RT_PARAMETER_DESCR Is returned from this method. It describes which
parameter is possible. In Field TYPE, the DDIC type
needs to be entered.

INITIALIZE:

Called at runtime when the form is created. It is the first feeder method which is called from FPM.

Parameter Description

IT_PARAMETER Contains a list of the feeder parameters and the
values for them specified in the configuration.

FLUSH:

The first feeder method which is called during an event loop. Whenever an FPM event is triggered (this
includes all round trips caused by the form itself) this method is called. Use it to forward changed form data

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 96

to other components in the same application.

Parameter Description

IT_CHANGE_LOG Lists all changes made by the user.

IS_DATA Is a structure containing the changed data

PROCESS_EVENT:

Called within the FPM event loop, it forwards the FPM PROCESS_EVENT to the feeder class. Here the event

processing can take place and this is where the event can be canceled or deferred.

Parameter Description

IO_EVENT The FPM event which is to be processed

EV_RESULT The result of the event processing. There are 3 possible
values:

ev_result =

if_fpm_constants=>gc_event_result-OK

ev_result =

if_fpm_constants=>gc_event_result-FAILED.

ev_result =

if_fpm_constants=>gc_event_result-DEFER

ET_MESSAGES A list of messages which shall be displayed in the
message region.

GET_DATA:

Called within the FPM event loop and forwards the FPM PROCESS_BEFORE_OUTPUT event to the feeder

class. Here you specify the form data after the event has been processed.

Parameter Description

IO_EVENT The FPM event which is to be processed.

IT_SELECTED_FIELDS The list of fields necessary for the form rendering.
Provide only the data for the fields listed in this table;
all other fields are neither visible at runtime nor used
as reference for visible fields.

ET_MESSAGES A list of messages which shall be displayed in the
message area.

EV_DATA_CHANGED For performance reasons, the GUIBB adjusts the
data in the form only if the data has been changed.
To indicate this, set this flag whenever you change
the data to be displayed within this feeder.

EV_FIELD_USAGE_CHANGED Indicates whether or not the field usage has been
changed by this method. If you change the field
usage without setting this flag to X, your changes are
ignored.

EV_ACTION_USAGE_CHANGD Indicates whether or not the action usage has been
changed. Use an X to indicate whether you changed
the action usage. If you do not, your changes are

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 97

ignored.

CS_DATA The form data to be changed.

CT_FIELD_USAGE Field usage to change. The field usage consists of
the field attributes which might change at runtime (for
example, enabled, and visible).

Note that if you change the fixed values of a field, set

the flag FIXED_VALUES_CHANGED for this field.

CT_ACTION_USAGE Action usage to change. The action usage consists
of the attributes related to actions which might
change at runtime. For example, visibility. If an action
is rendered as a button, then the visibility setting of
the button is defined here.

GET_DEFAULT_CONFIG:

Call this if you want to have a default configuration. Use it to call pre-configured form configurations when a
user starts the FPM Configuration Editor. This avoids the user, who uses a feeder class to create a form,
having to create it from the beginning.

Parameter Description

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_FORM_CONFIG: This object

provides the API to create a default configuration

CHECK_CONFIG:

Call this if you want to make your own application-specific checks on the configuration in the FPM
Configuration Editor immediately before saving.

Parameter Description

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_FORM_CONFIG: This object

provides the API to read the configuration to be
saved.

ET_MESSAGES A list of messages which shall be displayed in the
message region.

Using the CHECKBOX_GROUP Display Type in a Form

As of release SAP NetWeaver 7.0 enhancement package 2, the checkbox group display type is available. In
contrast to the other display types, the application has to ensure that everything works.

To use this field to full extent, consider the following:

 The field type must be of type Character and the field length needs to be at least the
number of checkboxes you expect.

 The values of the checkboxes need to be set as fixed values for the field.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 98

Default values for a checkbox can be set in the field.

For example, mark the second checkbox field value = X.

Within the FLUSH method you get the data and the change log back.

In the field for the checkbox you see at the index of the field whether it is checked (Checked = X) or not
(Unchecked = Space).

Remark on field length

As we set an X for the marked entry on the place in the field it is necessary to have the length at least as
long as much as you have values.

You have a field with length 10 and 10 fixed values. If you mark a checkbox this place will be X, checkbox 1

2 3 4 5 6 7 8 9 10. Let us presume all are marked. Within FLUSH method this field of the structure will be

updated XXXXXXXXXX. Let us presume the ninth field is not marked. Within FLUSH method this field of the

structure will be updated XXXXXXXX_X.

Let us presume the field would be of char10 and you have 12 fixed values. If you mark the twelfth checkbox
and want to return this information to the feeder class it does not work as you can only fill ten Xs in the field.

That is the reason why the field length should be at least equal to the numbers of fixed values.

List ATS Component (GUIBB List ATS)

The List ATS (ABAP Table Services) component is a GUIBB that is used to render lists according to the
latest UI guidelines. It provides a wide range of features, such as sorting, filtering and grouping, and contains
numerous personalization possibilities.

All new applications requiring a list component should use the LIST ATS component.

To utilize the features of the LIST ATS component, you must create a feeder class and a configuration for

WD component FPM_LIST_UIBB_ATS.

Feeder Class

The application is responsible for writing and implementing the feeder class.

The feeder class must implement the interface IF_FPM_GUIBB_LIST; the interface provides meta data

relating to columns, provides the data at runtime that shall appear in the list and contains methods that
participate in the FPM event loop.

Feeder Interface

The feeder interface IF_FPM_GUIBB_LIST contains the following methods:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 99

Method Name Description

GET_DEFINITION Called once at startup. Tells the List UIBB which columns and actions

are available. This is done using parameters EO_FIELD_CATALOG

and ET_ACTION_DEFINITION for columns and toolbar items

respectively. The columns and actions defined here do not
automatically appear at runtime. They appear in the FPM
configuration editor as a list of available columns and actions to
choose from. Only when they have been configured will they appear
at runtime.

It is also possible to provide additional information about columns
such as texts, tooltips, F4 helps, and formatting information. This is

done using parameter ET_FIELD_DESCRIPTION.

FLUSH Called as part of the FPM event loop. It is the first method of the event

loop. Using parameter IT_CHANGE_LOG it tells the feeder class what

changes have been made by the user. The changes, indicated by

IT_CHANGE_LOG, must not be copied into the source data table

(parameter IT_DATA); accessing the source table is not allowed in

this FPM event hook.

PROCESS_EVENT Also part of the FPM event loop; called directly after the FLUSH

method. Use this method to check the Event ID and, if necessary, to
carry out Event ID-specific processing. Besides the Event ID, the
feeder class also gets information about the current selected rows and
whether the event has been raised by this List UIBB or by some other
UIBB on the screen. For more information, use the parameter

IO_UI_INFO (interface IF_FPM_LIST_ATS_UI_INFO).

Additionally, this method can be used to pass messages using the

parameter ET_MESSAGES.

GET_DATA Also part of the FPM event loop; called directly after method

PROCESS_EVENT. It corresponds to the general UIBB method

PROCESS_BEFORE_OUTPUT. The main purpose of this method is to

exchange data between the feeder class and the List ATS UIBB (for
details, refer to the heading 'Data Exchange' in this document. It is
also used to change attributes of the table (parameters

CS_ADDITIONAL_INFO and CV_FIRST_VISIBLE_ROW), attributes

of the columns (parameter CT_FIELD_USAGE), and attributes of the

toolbar elements (parameter CT_ACTION_USAGE). With

CV_FIRST_VISIBLE_ROW it is possible to set the first visible row of

the list.

GET_PARAMETER_LIST Called once at startup. It is not mandatory to use this method. It is
used to fill the feeder class parameters with values. The feeder class
defines parameters and at design time one can assign values to those
parameters in the FPM configuration editor with this method. This is
used, for example, in more complex (generic) feeder classes.

INITIALIZE Called once at startup. It is not mandatory to use this method. At
runtime this method tells what parameters have been defined by the

feeder class (GET_PARAMETER_LIST) and what values have been

assigned to them in the configuration. This is used, for example, in
more complex (generic) feeder classes.

GET_DEFAULT_CONFIG Called once at startup. It is not mandatory to use this method. It has
two purposes. When creating a new configuration, use this method to

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 100

generate a list of columns and toolbar elements that could be
configured. This method is also called at runtime when no columns at
all are configured. In this case, it is used to generate a configuration.

CHECK_CONFIG Called at design time only. It is not mandatory to use this method. Use
this method to execute application-specific checks on the
configuration.

Configuration

General

As with other GUIBBs, you must create a configuration for the List ATS component; in this case, the Web
Dynpro component is based on FPM_LIST_UIBB_ATS. The feeder class is linked to the configuration in the
FPM configuration editor. If the feeder class has defined parameters using the method get_parameter_list,
the configuration editor allows you to assign specific values to them. This is relevant mostly for complex
(generic) feeder classes. Other parts of the configuration comprise the columns, the toolbar and the General
Settings. It is also possible to define a configuration using the feeder class method get_default_config.

Columns

Only columns that are configured in the FPM configuration editor will appear at runtime. You can choose
from columns that have been defined by the feeder class method get_definition, parameter eo_field_catalog.
In the attributes section of the FPM configuration editor, you can determine various attributes of each
configured column.

Toolbar

Only actions that are configured in the FPM configuration editor will appear at runtime. You can choose from
actions that have defined by the feeder class method get_definition, parameter et_action_definition. In the
attributes section of the FPM configuration editor, you can determine various attributes of each configured
action.

Data Exchange

General

The data exchange happens in the feeder methods FLUSH and GET_DATA. Data entered by the user is

passed using method FLUSH to the back end; the data from the back end is passed to the front end using

method get_data. The following are the different data exchange modes:

 Compatibility

 Key

 Stable line

It is recommended to use either the key or stable line modes to ensure that the data exchange complies with
the latest UI guidelines.

A detailed description for managing data exchange is found in the Edit Scenarios for the New List ATS UIBB
(See Appendix).

Compatibility Mode

This mode exists to support feeder classes that have been coded for the former (old) List UIBB. It uses two
parameters: ct_data and ev_data_changed. When the parameter ev_data_changed is set to TRUE, the List
ATS GUIBB takes the data from parameter ct_data. There is no possibility to exchange only part of the data,
the whole table is exchanged.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 101

Key Mode

In this mode, the rows of the data table have a primary key. Arbitrary operations with data table are possible
as long as the uniqueness of the keys is guaranteed.

This mode uses the parameters ct_data, cs_data_changed and eo_itab_change_log. The

parameter eo_itab_change_log is a handle to the interface if_salv_itab_change_log which

describes how the data in the data table was changed. This interface has the following methods:

Method Name Description

GET_INDEX_MAP Gets the indices of deleted rows (before image), the indexes of
inserted rows (after image), the mapping of rows between before and
after image and the indexes of rows (before image) which must be
moved to an insert position

GET_COLUMNS_MODIFIED Gets the names of columns for which values have been changed

GET_LINES_MODIFIED Gets the indices of lines (after image) for which values have been
changed

DATA_IS_NEW The value is TRUE if data is completely new and there is no connection

between before and after image

If the parameter ev_data_changed is set to TRUE, the List ATS UIBB distinguishes between the following

cases:

eo_itab-
change_log

Purpose

Initial Data table is changed but the changes are not recorded
 Data is new

Not Initial
DATA_IS_NEW =
TRUE

Data table is changed but the change log is not complete
 Data is new

Not Initial
DATA_IS_NEW =
FALSE

Data table is changed and the change log is complete

In the 'data is new‟ cases, no connection between the before and after images can be constructed by the List
ATS UIBB. Therefore, features such as sorting and filtering are executed automatically. These services are
not to be executed automatically when only part of the data is changed.

There is a standard implementation for Key Mode for the creation of a change log, the class

cl_salv_itab_editor_key_mode. This class has the following methods:

Method Name Description

LOG_NEW_DATA Resets the change log (DATA_IS_NEW); returns TRUE value

START_RECORDING Starts recording of a change log; an existing change log is deleted

KEY_CHANGED Notifies that a key was changed

STOP_RECORDING Stops recording of a change log

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 102

MOVE_TO_INSERT_POSITION Marks a line for moving to an insert position

For a detailed description of the Key Mode see „Guideline for Edit Scenarios for New List ATS UIBB‟ (See
Appendix).

Stable Line Mode

In this mode, the order of lines in the data table must not be changed; in particular, the table must not be
sorted. Insertions and deletions of lines are allowed.

This mode uses the parameters ct_data, cs_data_changed and eo_itab_change_log. For a

description of these parameters, refer to the 'Key Mode' section above.

There is a standard implementation for the Stable Line Mode for the creation of a change log, the class

cl_salv_itab_editor_line_mode. This class provides methods for table operations such as insert and

append instead of direct usage of ABAP statements. This class has the following methods:

Method Name Description

START_RECORDING Starts recording of a change log; an existing change log is deleted

SET_NEW_DATA Gets new data and resets the change log (DATA_IS_NEW returns

TRUE value)

APPEND_... Substitutes for ABAP statement APPEND (3 variants)

CLEAR_TABLE Substitutes for ABAP statement CLEAR

COLLECT_LINE Substitutes for ABAP statement COLLECT

DELETE_... Substitutes for ABAP statement DELETE (2 variants)

INSERT_... Substitutes for ABAP statement INSERT (3 variants)

MODIFY_LINE Substitutes for ABAP statement MODIFY

MOVE_TO_INSERT_POSITION Marks a line for moving to an insert position

For a detailed description of the Stable Line Modes see „Guideline for Edit Scenarios for New List ATS UIBB‟
(See Appendix).

Actions

General

Actions may be set in three different places in the List ATS UIBB: the toolbar, inside a normal cell, and inside
the action column (known as one-click actions). An action in this sense is a UI element, such as a button, a
link to action or an input field, that is capable of raising an FPM event.

Actions in the Toolbar

Firstly, the actions must be defined by the feeder. This is done in the feeder method get_definition,

using parameter et_action_definition. Additionally, the actions must be added to the Toolbar Schema

in the FPM configuration editor to ensure that they appear at runtime. At runtime, the actions will raise the

FPM event ID that has been specified using the attribute ID in parameter et_action_definition. It is

also possible that the action is not rendered in the toolbar of the List ATS UIBB but in the toolbar of the OVP

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 103

assignment block where the list is embedded. This is done by setting the flag Exposable of parameter

et_action_definition to TRUE. It is possible to change properties such as Visibility or Enabled of

the toolbar elements in the feeder method get_data using parameter ct_action_usage. It is possible to

assign a particular action (corresponding to one entry in et_action_definition) to more than one UI

element in the toolbar. However, when doing so, be aware of the following restriction: In feeder method

GET_DATA it is possible to change properties of the UI elements in the toolbar via parameter

CT_ACTION_USAGE. For actions that have been used more than once, it is only possible to change the

Visibility and Enable/Disable properties.

Actions inside Cells

Actions can also be set inside cells. There are several display types capable of raising an event, such as
input field, button, checkbox, and link to action. This is done in the configuration editor.

The standard behavior of all cell actions is to raise the same event, that is,

IF_FPM_GUIBB_LIST=>GC_GUIBB_LIST_ON_CELL_ACTION. Using the event parameter

IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_COLUMN_NAME, you can determine which cell has raised which

action. However, the standard behavior can be changed in the FPM configuration editor. In addition to the
standard behavior there is the possibility to un-assign an action (no action at all) or to assign a specific action

(in which case the action must be specified by the feeder class in method get_definition, parameter

et_action_definition).

One-Click Actions in the Action Column

One-click actions are actions that are specific to a certain table row and are executed with a single mouse
click, such as deleting a row, editing a row or setting the status of a row. One-click actions are of display type
Link to Action and are rendered in one single column known as the action column. In accordance with
current UI guidelines, there is only one action column and it is the first column in the table.

To use one-click actions, complete the following steps:

1. Define actions in the feeder class in the feeder method GET_DEFINITION using

parameter ET_ROW_ACTIONS.

2. Edit the configuration in the FPM configuration editor. If the feeder class has defined
one-click actions, the Repositories panel displays a special column,

FPM_ROW_ACTIONS_COLUMN which you can add to the object schema.

3. Add one-click actions to the action column. To do this, select the action column in
the object schema and then add single actions using the Attributes section of the
FPM configuration editor.

At runtime it is possible to disable or hide single one-click actions per row. You need to define a new
technical column of type BOOLEAN in the feeder class that controls the enablement or visibility of the one-

click action. To do this, add the column in feeder class method get_definition, parameter

EO_FIELD_CATALOG and mark it is as Technical using parameter ET_FIELD_DESCRIPTION and attribute

technical_field. The ID of that column must be put into the one-click action definition (feeder method

get_definition, parameter ET_ROW_ACTIONS, attribute visible_ref or enabled_ref). Fill the content of

that technical column according to your needs in feeder method GET_DATA.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 104

Features

Filtering

The feeder class must indicate whether a column can be filtered or not. This is done using method

get_definition, parameter et_field_description, attribute allow_filter. If the feeder class allows

filtering on columns, it is possible to switch the filtering on or off in the configuration editor.

Sorting

The feeder class must indicate whether a column can be sorted or not. This is done using method

get_definition, parameter et_field_description, attribute allow_sort. If the feeder class allows

sorting on columns, it is possible to switch the sorting on or off in the configuration editor.

Grouping

This feature allows the user to group entries of columns by header. It is not controlled by the feeder class. If
can be switched on or off only in the FPM configuration editor.

F4/Input Help

The List ATS UIBB supports the following types of F4 help:

 DDIC
If a column uses a data element that has a DDIC F4 help assigned to it, the F4 help
is used automatically. It is possible to overwrite this and to use another DDIC F4

help. This is done in feeder class method get_defintion, parameter

et_field_description, attribute DDIC_SHLP_NAME.

 OVS

To use this type of F4 help you must implement the interface IF_FPM_GUIBB_OVS.
This can be done in the feeder class itself or in another class. If you implement it in
another class, the List ATS UIBB instantiates the class at runtime. It is also
necessary to put the name of the class that implements the interface into the

attribute OVS_NAME of parameter et_field_description in feeder class method

get_definition.

The methods of the interface if_fpm_guibb_ovs must be implemented according to
the documentation for the online value help (OVS) concept. You can pass an FPM

event (eo_fpm_event) in method HANDLE_PHASE_3. This is optional. If it is passed, this
event is raised directly after the end of the value help processing. If it is not passed,
no roundtrip after the value help processing takes place.

 Freestyle WD ABAP
To use this type of F4 help, you need to create a Web Dynpro component that

implements the Web Dynpro interface IWD_VALUE_HELP (for details, refer to the
corresponding Web Dynpro ABAP documentation). You must put the name of that

component into the attribute WD_VALUE_HELP of parameter et_field_description in

feeder class method get_definition.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 105

Export to Spreadsheet

At runtime the user has the possibility to export the content of the list into a spreadsheet. This feature is
activated in the FPM configuration editor under General Settings.

Drag and Drop

You can enable drag-and-drop of rows during runtime. To do this, the feeder class must define the

corresponding attributes. This is done in method get_definition, parameter ET_DND_DEFINITION.

There, you can determine whether a list is to be the drag source, drop target or both (attribute Type),
whether drag-and-drop occurs only within the same list or between several lists (attribute Scope). If drag-
and-drop between several lists is defined, it is possible to control which lists are used as a drag source and
which lists are used as a drop target (attribute Tags). When two lists have the same tags, you can drag and
drop between them. You can assign more than one tag to a list in the configuration editor by separating them

with semi colons. Drag-and-drop attributes can be changed at runtime (feeder class method get_data,

parameter CT_DND_ATTRIBUTES and EV_DND_ATTR_CHANGED).

When drag-and-drop actually occurs at runtime, the following FPM event is raised after a row(s) has /have

been dropped: IF_FPM_GUIBB_LIST=>GC_GUIBB_LIST_ON_DROP (the event is only raised by the List

ATS UIBB when the user has dropped the rows).

You can check this using parameter IV_RAISED_BY_OWN_UI in feeder class methods get_data or

process_event. Data regarding the row that has been dragged is passed as an event parameter of the

event IF_FPM_GUIBB_LIST=> GC_GUIBB_LIST_ON_DROP. The row that has been dragged is not

automatically inserted into the target list. That must be done by the feeder class itself. To comply with current
UX guidelines, you must use a special method to insert the data. This method,

move_to_insert_position, is part of the change log API. Refer to the heading Data Exchange for

further details.

When grouping is enabled, it might happen that the drop position lies between two group header rows (for
example, if at least one group is collapsed). In this case, the insert position in the drop event is initialized.The
application must decide if the drop should still be executed. Inserted rows will be appended to the end of the

table if no other insert position has been explicitly specified in PROCESS_EVENT.

Personalization

The List ATS UIBB has a UI personalization dialog box. The user accesses it by a standard toolbar button. In
the personalization dialog box, the following features are available:

 Hide/unhide columns

 Change attributes of columns

 Create and change views

Advanced Features

Influencing the Row Order at Runtime

Usually, the row order at runtime is determined by sort settings which are personalized by the user. But even
in the absence of such sort rules, the List ATS attempts to keep the row order stable. While this is the

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 106

desired behavior in most use-cases, an application is sometimes required to have more control over the row
order at runtime.

If you need to influence the row order which is displayed to the user, you can choose from the alternatives
listed below. However, keep in mind that personalized sort and filter rules may have an impact on any
attempt to manipulate the row order at runtime.

 Disable sorting and grouping by configuration or feeder class definition. This prevents the user from
changing the row order without the feeder class noticing it. However, you must be aware that newly
inserted rows are inserted at the point of selection or appended to the end as long as the feeder provides

a change log in GET_DATA. If you want to avoid this, do not provide such a change log (or set the

change log report to „data is new“).

 Clear the sort and grouping rules immediately before setting new data as described in the section
Clearing Sorting and Grouping Rules from Personalization. Please consider very carefully whether this is
a good choice for your application. It is the application developer‟s responsibility to ensure that the UI
remains intuitive and usable when making use of this feature.

 Move individual rows to a given position – retaining their front-end order. In method PROCESS_EVENT,

you define the insert position as described in the section Defining the Insert Position of New Rows. In

method GET_DATA, you supply a change log which provides the rows to be moved to the insert position

in parameter ET_MOVE_TO_INSERT_POSITION of method GET_INDEX_MAP. Note that this procedure

retains the sequence of the moved rows as they were previously shown on the front-end. Any
personalized filter will not be applied to these rows any more.

 Move individual rows to a given position – displaying them in their back-end order. In method

PROCESS_EVEN, you define the insert position as described in the section Defining the Insert Position of

New Rows. In method GET_DATA, you supply a change log which lists the rows as both „deleted“ and

„inserted“. As a result, the inserted rows will be shown at the current insert position in the order they
appear in the original data table. Any personalized filter will not be applied to these lines.

Reading the Row Order Displayed at Runtime

It is possible to retrieve the order of the data rows as currently displayed on the front-end. To do so, you use

the instance of IF_FPM_LIST_ATS_UI_INFO that is passed as an import parameter IO_UI_INFO to

PROCESS_EVENT. For more details, refer to the ABAP documentation of method GET_LINE_ORDER of that

interface (accessible with the F9-key in the ABAP workbench).

This information is particularly useful if you want to provide functionality to move individual rows up or down.
In this case, make sure you consider the situations that users have personalized any filter conditions or that
users might have defined any grouping rules and some groups may be collapsed. In such cases,

GET_LINE_ORDER indicates hidden rows.

Defining the Insert Position of New Rows

You can define the insert position for new rows or moved rows in method PROCESS_EVENT. In order to do

so, use the instance of IF_FPM_LIST_ATS_UI_INFO that is passed as an importing parameter

IO_UI_INFO to PROCESS_EVENT. For more details, refer to the ABAP documentation of method

SET_INSERT_POSITION of that interface (accessible with the F9-key in the ABAP workbench).

You specify the insert position as a table index referring to the importing parameter IT_DATA of method

FLUSH. You can also specify whether the index position is before or after that data row. Always keep in mind

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 107

that the row order of the front-end may be different from the sequence in IT_DATA. Therefore, specifying the

insert position as „before 2“ is not the same as „after 1“.

If users have personalized a view with active grouping rules, new rows will be added to the group in which
the row at the insert position belongs to.

Clearing Sorting and Grouping Rules from Personalization

If the feeder class provides no change log in GET_DATA and sets EV_DATA_CHANGED to TRUE, the data

table will be subjected to any personalized sorting rules. If you want new data to be shown in exactly the
same order provided by the feeder class, you must clear the personalized sorting rules, first. The feeder
class can achieve this by raising the FPM event

IF_FPM_GUIBB_LIST=>GC_EVENT_CLEAR_SORT_RULES_ATS (make sure to attach the instance key to

the event). The sorting rules will be cleared after the phase PROCESS_EVENT has been finished for this

event. So, if the feeder class provides new data in method call GET_DATA for this event, this data will be

displayed in the sequence provided by the feeder class.

Note that clearing sorting rules also results in clearing grouping rules. The event does not clear any filter
rules.

Sorting and filtering of icons (columns that have the display type image)

List ATS provides the possibility to let the user sort and filter images. In order to enable this, some meta data
needs to be attached to the images. This is done in feeder class method get_definition, parameter

et_field_description, attribute ENUMERATION. This attribute is a table consisting of two

columns: values and their descriptions. The column values should contain the technical names that appear
at runtime in the table itself. For example, let‟s assume there is a table column image, having to two entries:
“~icon/red” and “~icon/green”. The table should be filled like this:

Value Text (description)

~icon/red Declined

~icon/yellow Undecided

~icon/green Approved

The order of the entries in the enumeration table is important. At runtime, when a user chooses the sort
action, the column is sorted in the order defined in the enumeration table, that means in this example, red
icons are displayed on top, followed by yellow icons and then green icons. It is also possible to change the

content of the enumeration table at each round trip. This is done in feeder class method get_data, via

parameter IO_EXTENDED_CTRL.

Changes to Elements from 'Old' List Component (GUIBB List)

Note the following changes regarding elements that were available in the previous version of the list
component:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 108

 Data changes in feeder class method FLUSH

Method FLUSH contains the parameter it_data. This parameter holds a reference to
the internal table which contains the table data. Therefore, it is theoretically possible
to change the table data via this parameter, though it was never the intention to
allow the feeder class to do so. The correct place to change the data is in feeder

method get_data. The List ATS does not allow you to change data in method FLUSH
any longer.

 Style of rendering
The old list can be adjusted to render itself in the following different styles:

o Normal list rendering
o Row-repeater rendering
o ALV rendering

This feature no longer exists in the List ATS (the features in ALV rendering are
already included in the List ATS, for example, personalization, extended sorting,
filtering, and so on).

List Component (GUIBB LIST)

Note that this component has been superseded by a new List ATS component, FPM_LIST_UIBB_ATS.

This is a generic design template for displaying data in a list that is implemented using the Web Dynpro

component FPM_LIST_UIBB.

You use this design template in application-specific views (UIBB) where you want to display data using a list.
You can determine the concrete display of the data in a list when configuring the Web Dynpro component

FPM_LIST_UIBB.

Structure

A list consists of a number of columns. The component-defined view gives you the opportunity to specify:

 Which data is displayed in which columns.

 Which display type (such as display field or input field) is used in which column.

 Which order the columns are arranged in.

 The number of columns and rows that can be displayed in the view at one time.

The data of a list that can be displayed is determined by the feeder class that is assigned to the configuration

of the Web Dynpro component FPM_LIST_UIBB.

Integration

You can configure a list component using the configuration editor for Floorplan Manager, FLUID.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 109

IF_FPM_GUIBB_LIST Interface

The following tables describe the methods (and their attributes) of the IF_FPM_GUIBB_LIST interface.

If your application does not need a particular method, implement an empty method, otherwise the system will
dump.

You must implement at least the following methods:

 GET_DEFINITION

 GET_DATA

Methods

GET_DEFINITION:

Allows the feeder to provide all necessary information for configuring a list: the list of available fields and their
properties and the list of actions (FPM events).

Parameter Description

EO_FIELD_CATALOG Is of type CL_ABAP_STRUCTDESCR. The components of this object are the

available fields. The simplest way to provide a field catalog is to create a flat
DDIC structure containing all fields and then get the field catalog via

eo_field_catalog ?= CL_ABAP_STRUCTDESCR=>describe_by_name(

<name>)

 The list GUIBB supports only flat structures. When using deep
structures, only the highest level fields are available.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 110

ET_FIELD_DESCRIPTION Optional only.

Is used to add additional properties for the columns:

 Attribute label_by_ddic
Indicates whether column header text should be taken
from DDIC or not

 Search helps
DDIC, OVS, and freestyle search help

 Attribute header_text_wrapping
Determines whether the column header text shall be
wrapped or not.

 Attributes for read-only, mandatory, enabled and visibility.

 Attributes for enabling filtering and sorting, for formatting
amongst others.

 CELL_DESIGN_REF
Points to a technical column which contains data to
change the background color of cells (data type

WDUI_TABLE_CELL_DESIGN). Use this to change the
background color of single cells.

ET_ACTION_DEFINITION A list of all actions (which will be transformed to FPM events at runtime) that
you can assign to list elements. If an action is only active when a lead selection

occurs, set the attribute DISABLE_WHEN_NO_LEAD_SEL to True.

ET_SPECIAL_GROUPS Here you have the same options that you have in the ABAP ALV (see function

module REUSE_ALV_GRID_DISPLAY) to group the fields within your field

catalogue. You must enter the special group for each field in the field

description table in field SP_GROUP. At design-time the FPM Configuration

Editor groups the fields. This is an easier way to find fields if your field
catalogue contains many fields.

GET_PARAMETER_LIST:

Called at design time and allows you to define a list of the parameters that the feeder class supports. This list
is used by the FPM Configuration Editor to provide the input fields for these parameters.

Parameter Description

RT_PARAMETER_DESCR Is returned from this method. It describes which parameter is possible. In Field
TYPE, the DDIC type needs to be entered.

INITIALIZE:

Called at runtime when the list is created. It is the first feeder method which is called from FPM.

Parameter Description

IT_PARAMETER Contains a list of the feeder parameters and the values for them specified in the
configuration.

FLUSH:

The first feeder method which is called during an event loop. Whenever an FPM event is triggered this
method is called (this includes all round trips caused by the list itself). Use it to forward changed list data to
other components in the same application.

Parameter Description

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 111

FLUSH:

The first feeder method which is called during an event loop. Whenever an FPM event is triggered this
method is called (this includes all round trips caused by the list itself). Use it to forward changed list data to
other components in the same application.

Parameter Description

IT_CHANGE_LOG Lists all changes made by the user.

IT_DATA Is a table containing the data.

IV_OLD_LEAD_SEL Previous lead selection.

IV_NEW_LEAD_SEL Current lead selection.

PROCESS_EVENT:

Called within the FPM event loop and forwards the FPM PROCESS_EVENT to the feeder class. Here the

event processing can take place and this is where the event can be canceled or deferred.

Parameter Description

IO_EVENT The FPM event which is to be processed.

EV_RESULT The result of the event processing. There are 3 possible values:

ev_result = if_fpm_constants=>gc_event_result-OK

ev_result = if_fpm_constants=>gc_event_result-FAILED.

ev_result = if_fpm_constants=>gc_event_result-DEFER

ET_MESSAGES A list of messages which shall be displayed in the message region.

GET_DATA:

Called within the FPM event loop, it forwards the FPM PROCESS_BEFORE_OUTPUT event to the feeder class.

Here you specify the list data after the event has been processed.

Parameter Description

IO_EVENT (IV_EVENTID) The FPM event which is to be processed

IT_SELECTED_FIELDS The list of fields necessary for the list rendering. Provide only the data
for the fields listed in this table; all other fields are neither visible at
runtime nor used as reference for visible fields.

ET_MESSAGES A list of messages which shall be displayed in the message area.

EV_DATA_CHANGED For performance reasons, the GUIBB adjusts the data in the list only if
the data has been changed. To indicate this, set this flag whenever you
change the data to be displayed within this feeder.

EV_FIELD_USAGE_CHANGED Indicates whether or not the field usage has been changed by this
method. If you change the field usage without setting this flag to „X‟,
your changes are ignored.

EV_ACTION_USAGE_CHANGED Indicates whether or not the action usage has been changed. Use an
„X‟ to indicate whether you changed the action usage. If you do not,
your changes are ignored.

CT_DATA The list data to be changed.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 112

CT_FIELD_USAGE Field usage to change. The field usage consists of the field attributes
which might change at runtime (for example enabled or disabled, visible
or invisible, mandatory or optional, read-only or edit). Use it to control
the properties of columns.

 If you change the fixed values of a field, set the flag

FIXED_VALUES_CHANGED for this field.

CT_ACTION_USAGE Action usage to change. The action usage consists of the attributes
related to actions which might change at runtime (for example enabled
or disabled, visible or invisible, mandatory or optional, read-only or edit).
Use it to control the properties of toolbars. If an action is rendered as a
button, the visibility setting (for example) of the button is defined here.

CV_FIRST_VISIBLE_ROW This parameter indicates the absolute table index of the first visible
table row. Use it to move the current position of the table´s vertical
scrollbar.

You can assign the attributes for CT_FIELD_USAGE and CT_ACTION_USAGE either to single cells or to

whole columns.

If you want to set these attributes for the whole column, use the corresponding fields in the field_usage

structure.

If you would like to set these attributes for single cells, proceed as follows:

1. Create a new column for the table (add a field to the field catalog in the

GET_DEFINITION method).
2. Define the column as a technical column that is not visible at runtime, by setting the

field technical_field to „X‟. This column contains the properties of the cells.

3. In the GET_DEFINITION method, adjust the field description accordingly. For

example, you have a column A and you want to set the property Read_only for
single cells in that column. For this reason you created a technical column B. In the

field description, set read_only_ref to B.

GET_DEFAULT_CONFIG:

Call this if you want to have a default configuration. Use it to call pre-configured list configurations when a
user starts the FPM Configuration Editor. This avoids the user, who uses a feeder class to create a list,
having to create it again from the beginning.

Parameter Description

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_LIST_CONFIG: This object provides the API to

create a default configuration.

CHECK_CONFIG: Call this if you want to make your own application-specific checks on the configuration in
the FPM Configuration Editor immediately before saving.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 113

Parameter Description

IO_LAYOUT_CONFIG
Of type IF_FPM_GUIBB_LIST_CONFIG: This object provides the API to read

the configuration to be saved.

ET_MESSAGES A list of messages which shall be displayed in the message region.

IF_FPM_GUIBB_LIST_PAGING Interface

The following tables describe the methods of the IF_FPM_GUIBB_LIST_PAGING interface. This is an

optional interface and should only be implemented by the feeder class if the application wants to make use of
the paging feature for the GUIBB list.

Paging means that not all data of a list is loaded at once but only those portions that are needed at a certain
time. You may consider implementing this interface if your list has more than 100 rows and thereby reducing
memory usage and shortening response times.

You must implement at least the following methods:

 GET_DEFINITION

 PROCESS_EVENT

 GET_DATA

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 114

Methods

INITIALIZE:

This method is called once during start up. The feeder may use to switch paging on or off.

Parameter Description

CV_PAGING_ACTIVE
Tells the list UIBB whether the paging feature is active or not.

CV_BUFFERING_ACTIVE
Tells the list UIBB whether buffering of pages should be active or not. It is
recommended to not buffer pages as in most cases the data is already buffered
in the backend and thus it is avoided to have multiple buffers for the same data.

GET_ABSOLUTE_AMOUNT_OF_ROWS:

This method is called whenever the list data has been changed by the feeder.

Parameter Description

EV_AMOUNT_OF_ROWS
Tells the list UIBB how many rows the list has in total.

CV_FIRST_VISIBLE_ROW
Tells the list UIBB which should be the first visual row (all indexes are
absolute)..

FLUSH:

Is called at the beginning of each FPM event. This method replaces the method

IF_FPM_GUIBB_LIST=>FLUSH.

Parameter Description

IT_CHANGE_LOG
Contains the change log (all indexes are absolute).

IV_NEW_LEAD_SEL Contains the new lead selection index (all indexes are absolute)

IV_OLD_LEAD_SEL Contains the old lead selection index (all indexes are absolute)

GET_PAGE:

This method is called whenever the list UIBB needs data from the feeder, e. g. in case when the user scrolls
within the table or the list UIBB ask for new data.

Parameter Description

IV_START_ABSOLUTE
Contains the start index

IV_AMOUNT_ROWS
Contains the required amount of rows.

IT_SELECTED_FIELDS
Tells what columns are configured

CT_DATA
This parameter is used for the table data.

PROCESS_EVENT:

This method is called within the FPM event loop. It forwards the FPM PROCESS_EVENT event to the feeder

class. It replaces the IF_FPM_GUIBB_LIST=>PROCESS_EVENT method.

Parameter Description

IO_EVENT
The FPM event which is to be processed.

IV_LEAD_INDEX
Contains the lead index (all indexes are absolute).

IT_SELECTED_LINES
Tells which rows are selected.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 115

IV_RAISED_BY_OWN_UI
Tells whether the event was raised by the actual search UIBB or by some
other UIBB.

ET_MESSAGES
The feeder class may return messages via this parameter. As usual the
messages will be displayed within the FPM message area.

GET_DATA:

Called within the FPM event loop and forwards the FPM PROCESS_BEFORE_OUTPUT event to the feeder

class. The main purpose of this method is to transport data from the feeder class to the list UIBB. It replaces

the IF_FPM_GUIBB_LIST=>GET_DATA method. For a detailed description of the parameter refer to the

documentation of IF_FPM_GUIBB_LIST=>GET_DATA method.

Additional Information on the List Component

The following information is useful when configuring a List Component.

Attributes

In the hierarchy of the Component Configuration of your application, the following attribute is available for the
List Component:

 Lead Selection Action Assignment: You can assign an FPM event ID to the lead
selection here. If a lead selection occurs during runtime, the assigned FPM event is

raised. If you assign no event ID, the generic event ID

IF_FPM_GUIBB_LIST=>GC_FPM_EVENT_ON_LEAD_SEL is assigned.

In the hierarchy of the Component Configuration of your List Component, choose Settings to display the
following attributes:

 Column count: Determines the amount of columns that are displayed at runtime
 Row count: Determines the amount of rows that are displayed at runtime
 Selection Event: Like a Web Dynpro table, the List Component offers two kinds of

selection at runtime:
 Lead selection (the user uses the left mouse button to select one single row)
 Normal selection (the user uses the right mouse button to select one or more rows)
 Using this dropdown list box, you can determine what kind of selection raises an

FPM event. The default is a Lead Selection.
 Selection Mode: Determines whether it is possible to select multiple rows
 Selection Behavior: Determines whether currently selected rows are de-selected

when the user makes a new selection
 Fixed Columns: It is possible to set the initial column in a list as a fixed column. As a

result, whenever a horizontal scrollbar is used, these fixed columns cannot be
scrolled. There is an attribute in the General Settings for the GUIBB, where you can
set how many columns need to be fixed. The following points are to be noted:

 It is only the initial column that can be fixed; columns with index 1,2,3... It is not
possible to fix columns at random indices.

 The number of visible columns is independent of the number of fixed columns. For
example, if the Fixed Columns is set as 3 and the total columns as 5, then the actual
number of columns visible on the UI would be 8. Here, the first 3 columns would

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 116

always remain fixed and the count for the visible column starts from 1 after the last
fixed column.

 Initial Lead Selection: If this field is selected then, at runtime if the list contains at
least 1 record, the first record is lead selected.

FPM Events and the List Component

As the List Component is itself an FPM UIBB, it takes part, when it is visible, in each FPM event loop. The
List Component may also raise FPM events itself. These events are raised from the following three sources:

 Cell events
The columns may contain fields that have a display type that are capable of raising
an event (for example, a button display type). All cell-based events have the FPM

event ID IF_FPM_GUIBB_LIST=>GC_GUIBB_LIST_ON_CELL_ACTION. The corresponding
row and column values are added as event parameters to this FPM event

IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_ROW and

IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_COLUMN_NAME.

 Toolbar events
Almost each toolbar element may raise an FPM event. In this case, the event ID is

the action ID (which was defined by the feeder class in method get_definition).
Some toolbar elements may contain specific values of interest (for example user
inputs), such as the toggle button, the input field and the dropdown list box. To get
these values, you may read the following FPM event parameters

IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_TOGGLE_STATE (for the toggle button),

IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_INPUT_VALUE (for the input field) or

IF_FPM_GUIBB_LIST=>GC_EVENT_PAR_DROP_DOWN_KEY (for the dropdown list box).

 Selection events
A row selection may also raise an FPM event. It is possible to choose whether only
a lead selection raises an FPM event or also a normal selection (see configuration
settings for details).

Rendering GUIBB List as ALV

From FPM 702e onwards, there is an option to render the data in a List Component using the SAP List
Viewer (ALV). This allows the end user to personalize the table and, amongst other things, to export data
from the table to a spreadsheet, to use the print feature, and to sort and filter data.

For more information on the SAP List Viewer (ALV), see the SAP NetWeaver Library under SAP NetWeaver
Developer‟s Guide, Using ABAP, and Web Dynpro for ABAP, Web Dynpro ABAP: Development in Detail,
and Integration.

Design Time Settings in the Configuration Editor

In the Component Configuration screen of the List Component Configuration Editor, choose Settings in the
Hierarchy. In the Attributes section, the Rendering Style dropdown list displays the following options:

 Standard Rendering
The data is displayed in a simple table format.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 117

 Render as Row-Repeater
The data is displayed in a single column format. Column headings which would
appear once in a table format are repeated here to form a group; one group is
displayed on top of another group in a single column.

 Render as ALV
The data is displayed in an ALV table format with sorting, filtering, printing and
personalization capabilities as well as the feature to print to Microsoft Office Excel.
No other settings are required for ALV output; it is not necessary to make changes
to the feeder class, nor to the configuration of the List Component.

Runtime Activities

If ALV rendering has been selected, the end user can, at runtime, choose the Settings icon in the ALV table
and make changes to the table layout and save these changes. The changes appear as a new view option in
the View dropdown list the next time the application is run.

Important Points to Note

 Rendering a list with ALV consumes considerably more memory than rendering with
the List Component. Therefore, it is recommended to render with ALV only when
necessary.

 The following drawback should be taken into consideration. If ALV rendering is
selected, it should never be deselected in a later delivery. If the end user
personalizes an ALV table, the changes are lost when ALV is switched off in a later
delivery.

 Note that it is possible to print table data to a spreadsheet without rendering the
table in ALV format. In the Configuration Editor of the List Component, choose
Settings in the Hierarchy. In the Attributes section, select the Export to Excel
checkbox. This provides an Export List button above the table at runtime.

 Data handling and formatting in ALV may not be exactly the same as with the List
Component, due to the technical differences between ALV tables and WD tables
(for example, the event names are not the same for the two tables).

 It is recommended (but not mandatory) to use separate configurations for the List
Component and ALV to avoid possible discrepancies. Due to the point above,
applications might code in the feeder class specific to an event ID and parameters.
Switching between the two modes for the same configuration might lead to
discrepancies. The List Component and ALV are also different in terms of the
features they offer. It is therefore best if they are separate configurations to avoid
features being available in one and not available in the other for the same table.

Hierarchical List Component (GUIBB TREE)

This is a generic design template for displaying data in a hierarchical list or tree that is implemented using
the Web Dynpro component FPM_TREE_UIBB. You use this design template in application-specific views
(UIBB) where you want to display data in a hierarchical list or tree. You can determine the concrete display of
the data in a tree when configuring the Web Dynpro component FPM_TREE_UIBB.

Structure

A hierarchical list is structured as follows:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 118

 Master Column
The master column displays all the items in a list. When the system first displays a
table, each top-level, parent item in the master column is preceded by an Expand or
Collapse icon, which allows you to see the child (sub) items contained within it. A
top-level item in the master column without child items has no Expand or Collapse
icon preceding it.

The master column is always visible; you cannot hide this column.

The master column is always displayed as the first column in a table; you cannot
move its position in a table.

The hierarchical list component permits incremental loading of data, meaning that
data relating to child-lists can be loaded into the application when the node is
expanded. It is also possible to get an event for the closing of a particular node in
the master column. FPM provides an event called ON_LOAD_CHILDREN only
when a tree node is opened. However, whenever a node is collapsed, another FPM
event MASTER_COLUMN_NODE_COLLAPSED is also triggered. This can be
handled in the feeder class just like other FPM events. The event data specific to
the index is available as event parameters.

 Non-master columns
These columns display the details of each list item.

 Rows
Each item in a list is displayed in a separate row.

 Toolbar
A toolbar displays the Collapse All and Expand All buttons (if selected) and other
buttons that you have created.

The component-defined view gives you the opportunity to specify the following:

 The hierarchy pattern for the master column of the tree
 The data can be displayed in each column
 The display type (such as display field or input field) used for each column (except

the master column)
 The order the columns are arranged in.
 The number of columns and rows that can be displayed in the view at one time

The data of a tree that can be displayed is determined by the feeder class that is assigned to the
configuration of the Web Dynpro component FPM_TREE_UIBB.

Integration

You can configure a tree component using the configuration editor for Floorplan Manager, FLUID.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 119

IF_FPM_GUIBB_TREE Interface

The following tables describe the methods (and their attributes) of the IF_FPM_GUIBB_TREE interface. If

your application does not need a particular method, implement an empty method, otherwise the system will
dump.

Note

You must implement at least the following methods:

 GET_DEFINITION

 GET_DATA

Methods of the IF_FPM_GUIBB_TREE Interface

GET_DEFINITION:

Allows the feeder to provide all necessary information for configuring a tree: the list of available fields and
their properties and the list of actions (FPM events).

Parameter Description

EO_FIELD_CATALOG Is of type CL_ABAP_TABLEDESCR. The components

of this object are the available fields. The simplest
way to provide a field catalog is to create a flat DDIC
structure containing all the fields and then get the
field catalog via

eo_field_catalog ?=

CL_ABAP_TABLEDESCR=>describe_by_name(

<name>)

 Note

The tree GUIBB supports only flat structures. When
using deep structures, only the highest level fields
are available.

ET_FIELD_DESCRIPTION This mandatory parameter is used to inform FPM
which fields from the field catalog are to be used for
which purpose in the tree. This is achieved with the

help of the field COLUMN_TYPE (see note and table

below).

The ET_FIELD_DESCRIPTION parameter can also

be used to provide additional properties for various
columns:

 LABEL_BY_DDIC: Indicates whether a

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 120

column header text should be taken
from DDIC or not

 Search helps: DDIC, OVS, and
freestyle search help

 HEADER_TEXT_WRAPPING: Determines
whether the column header text shall
be wrapped or not

 Attributes for read-only, mandatory,
enabled and visibility

 Attributes for enabling filtering and
sorting, for formatting amongst others

ET_ACTION_DEFINITION

A list of all actions (which will be transformed to FPM
events at runtime) that you can assign to the tree
elements.

ET_SPECIAL_GROUPS

This provides you with the same options that you
have in the ABAP ALV (see function module

REUSE_ALV_GRID_DISPLAY) to group the fields

within your field catalogue. You must enter the
special group for each field in the field description
table in field SP_GROUP. At design-time, the FPM
Configuration Editor groups the fields together,
providing you with an easier method for finding fields.

COLUMN_TYPE: To create a hierarchical list (tree), you must establish the hierarchical relationship between
records using the application data. To do this, the fields in the following table are required. This information is

passed in the GET_DEFINITION method of the feeder class. From the field catalog provided in this method,

you must select the fields which you want to use to determine the hierarchy. The field COLUMN_TYPE in the

ET_FIELD_DESCRIPTION is used to provide this information. The following table explains the various

column types.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 121

Field/
Column
Type

Explanation Optional Data
Type

Parent Key This column of a table contains the parent element in the
hierarchy at any level.

No Any

Row Key This column of a table contains the row/child element in the
hierarchy at any level.

No Any

Expanded This column of the table determines whether the parent node is
expanded or not.

No Boolean

Is Leaf This column of the table determines whether the element is the
last node in the hierarchy.

Yes Boolean

Children
Loaded

This column helps in stopping a backend call every time the
same node is opened.

Yes Boolean

Text This column determines the text which needs to be rendered on
the UI for the tree column.

Yes String

Image This column contains the string for an icon if you want to
display one in the master column.

Yes String

GET_PARAMETER_LIST:

This method is called at design time and allows you to define a list of the parameters that the feeder class
supports. This list is used by the FPM Configuration Editor to provide the input fields for these parameters.

Parameter Description

RT_PARAMETER_DESCR Is returned from this method. It describes which
parameter is possible. In Field TYPE, the DDIC type
needs to be entered.

INITIALIZE:

Called at runtime when the tree is created. It is the first feeder method which is called from FPM.

IT_PARAMETER Contains a list of the feeder parameters and the
values for them specified in the configuration.

FLUSH:

The first feeder method which is called during an event loop. Whenever an FPM event is triggered, this
method is called (this includes all round trips caused by the list itself). You can use it to forward changed tree
data to other components in the same application.

IT_CHANGE_LOG Lists all changes made by the user.

IS_DATA A structure containing the changed data.

PROCESS_EVENT:

Called within the FPM event loop, it forwards the FPM PROCESS_EVENT to the feeder class. Here the
event processing takes place and this is where the event can be canceled or deferred.

IO_EVENT The FPM event which is to be processed.

EV_RESULT The result of the event processing. There are 3

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 122

possible values:

 ev_result =
if_fpm_constants=>gc_event_result-
OK

 ev_result =
if_fpm_constants=>gc_event_result-
FAILED

 ev_result =
if_fpm_constants=>gc_event_result-
DEFER

ET_MESSAGES A list of messages which shall be displayed in the
message region.

GET_DATA:

Called within the FPM event loop, it forwards the FPM PROCESS_BEFORE_OUTPUT event to the feeder class.

Here you specify the tree data after the event has been processed.

IO_EVENT The FPM event which is to be processed.

IT_SELECTED_FIELDS The list of fields necessary for the tree rendering.
Provide only the data for the fields listed in this table;
all other fields are neither visible at runtime nor used
as reference for visible fields. The master column,
however, is a combination of multiple fields of the
field catalog and therefore the master column cannot
be explicitly found in this parameter.

ET_MESSAGES A list of messages which shall be displayed in the
message area.

EV_DATA_CHANGED For performance reasons, the GUIBB adjusts the
data in the tree only if the data has been changed.
To indicate this, set this flag whenever you change
the data to be displayed within this feeder.

EV_FIELD_USAGE_CHANGED Indicates whether or not the field usage has been
changed by this method. If you change the field
usage without setting this flag to „X‟, your changes
are ignored.

EV_ACTION_USAGE_CHANGED Indicates whether or not the action usage has been
changed. Use an „X‟ to indicate whether you
changed the action usage. If you do not, your
changes are ignored.

CT_DATA The tree data to be changed. This is the actual data
that gets rendered on the screen.

CT_FIELD_USAGE Field usage to change. The field usage consists of
the field attributes which might change at runtime (for
example enabled or disabled, visible or invisible,
mandatory or optional, read-only or edit). Use it to
control the properties of columns.

 If you change the fixed values of a field, set the

flag FIXED_VALUES_CHANGED for this field.

See also the note below on assigning attributes to
single cells or whole columns.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 123

CT_ACTION_USAGE Action usage to change. The action usage consists
of the attributes related to actions which might
change at runtime (for example enabled or disabled,
visible or invisible, mandatory or optional, read-only
or edit). Use it to control the properties of toolbars. If
an action is rendered as a button, the visibility setting
(for example) of the button is defined here.

See also the note below on assigning attributes to
single cells or whole columns.

CS_TREE_ATTRIBUTES Use this parameter to specify the header and the
tooltip for the master column in the tree.

Regarding columns, note that it is possible to assign the attributes for CT_FIELD_USAGE and

CT_ACTION_USAGE either to single cells or to whole columns. If you want to set these attributes for the

whole column, use the corresponding fields in the FIELD_USAGE structure. If you would like to set these

attributes for single cells, proceed as follows:

1. Create a new column for the table (add a field to the field catalog in the

GET_DEFINITION method).
2. Define the column as a technical column that is not visible at runtime, by setting the

field TECHNICAL_FIELD to „X‟. This column contains the properties of the cells.

3. In the GET_DEFINITION method, adjust the field description accordingly. For

example, you want to set the property READ_ONLY for single cells in column A. For
this reason, you create a technical column B. In the field description, you set
READ_ONLY_REF to B.

GET_DEFAULT_CONFIG:

Call this if you want to have a default configuration. Use it to call pre-configured tree configurations when a
user starts the FPM Configuration Editor. This avoids the user, who uses a feeder class to create a tree,
having to create it again from the beginning.

Parameter Description

IO_LAYOUT_CONFIG It is of type IF_FPM_GUIBB_TREE_CONFIG which

provides the API to create a default configuration.

CHECK_CONFIG:

Call this if you want to make your own application-specific checks on the configuration in the FPM
Configuration Editor immediately before saving.

Parameter Description

IO_LAYOUT_CONFIG It is of type IF_FPM_GUIBB_TREE_CONFIG which

provides the API to read the configuration to be
saved.

ET_MESSAGES A list of messages which shall be displayed in the
message region.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 124

Additional Information on the Hierarchical List Component

 Column Header and Tooltip for the MasterColumn element
You can include your own master column header and tooltip and override text
defined by the feeder class.

 Master Column Display Types: It is possible to configure different display types for
the master column in a Tree UIBB using FPM's configuration editor. To pass the
data or to maintain the cell level properties of the master column (for example,
Tooltip, Enabled), you must specify the particular ...REF column in the field
description. This REF column must be associated with the field in the catalog which
is used as the ROW KEY for the tree. With the Checkbox display type , it is possible
to associate text with the column. To do this, use the TEXT_REF field in the field
description to handle the cell level text content in columns where the display type is
CheckBox.

 Lead Selection Action Assignment: You can assign an FPM event ID to the lead
selection here. If a lead selection occurs during runtime, the assigned FPM event is
raised. If you assign no event ID, the generic event ID

IF_FPM_GUIBB_TREE=>GC_FPM_EVENT_ON_LEAD_SEL is assigned.

FPM Events and the Hierarchical List Component

As the Hierarchical List Component is itself an FPM UIBB, it takes part, when it is visible, in each FPM event
loop. The Hierarchical List component may also raise FPM events itself. These events are raised from the
following three sources:

 Cell events
The columns may contain fields that have a display type that are capable of raising
an event (for example, a button display type). All cell-based events have the FPM

event ID IF_FPM_GUIBB_TREE=>GC_GUIBB_TREE_ON_CELL_ACTION. The corresponding
row and column values are added as event parameters to this FPM event

IF_FPM_GUIBB_TREE=>GC_EVENT_PAR_ROW and

IF_FPM_GUIBB_TREE=>GC_EVENT_PAR_COLUMN_NAME.

 Toolbar events
Almost each toolbar element may raise an FPM event. In this case, the event

o ID is the action ID (which was defined by the feeder class in method

GET_DEFINITION). Some toolbar elements may contain specific values of
interest (for example user inputs), such as the toggle button, the input field
and the dropdown list box. To get these values, you may read the following

FPM event parameters IF_FPM_GUIBB_TREE=>GC_EVENT_PAR_TOGGLE_STATE

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 125

(for the toggle button), IF_FPM_GUIBB_TREE=>GC_EVENT_PAR_INPUT_VALUE (for

the input field) or IF_FPM_GUIBB_TREE=>GC_EVENT_PAR_DROP_DOWN_KEY (for the
dropdown list box).

There is a default set of buttons in the toolbar for applications. This button set
contains two buttons which are the Expand All and the Collapse All buttons which
control the display content of the tree nodes. Once the default button set is
configured, the applications themselves must handle the event IDs of these buttons
in the feeder class.

 Selection events:
A row selection may also raise an FPM event. It is possible to choose whether only
a lead selection raises an FPM event or also a normal selection (see configuration
settings for details).

 Sorting Event:
It is possible sort the Hierarchical List/Tree UIBB. However, the FPM framework
provides only the handle for the SORT event triggered on the UI by a user. As a
result, an FPM event is triggered which can then be handled in the respective
feeder class. Information such as the feeder class, the direction of the sort and the
column which is sorted shall be available as event parameters. The actual sorting of
the data needs to be handled in the feeder class itself. Note that the master column
of the Tree UIBB shall not be available for sorting. Sorting can be activated just for
the other columns in the Tree. Also the sorting needs to be activated via the feeder

class, the same way it is for the List UIBB in the GET_DEFINITION method. The FPM

event ID which is raised for sorting is FPM_SORT_TREE_COLUMN.

Search Component (GUIBB SEARCH)

A generic design template for displaying a search query which is implemented using the Web Dynpro

component FPM_SEARCH_UIBB.

You can determine the search query by configuring the Web Dynpro component FPM_SEARCH_UIBB.

The following screenshot details the search component elements:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 126

Structure

A search component is comprised of the following objects:

 Search Attributes
These are the attributes that a user can use to build up a search query, e.g. cost
center, personnel number or area code, etc. Each search attribute has a certain
ABAP data type. From this ABAP data type, a particular meta type is derived. The
existing predefined meta types are: text, alpha numeric, numeric, date,
enumeration, and Boolean.

The table below shows the mapping in the standard delivery.

ABAP Data type Meta Type

Character or string text

Char or string with 2 values in domain Boolean

Char or string with more than 2 values in
domain

enumeration

Numeric, integer, packed, float, hexadecimal numeric

Date, time date

Others text

It is possible to overwrite the standard mapping by using the field description in the
feeder class (see later in this section).

 Search Operators
These are operators such as is, is greater than, or is between that the user can
combine with search attributes in order to build up the query. Each search attribute
gets a default set of search operators assigned. The content of that set depends on

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 127

the meta-type of the search attribute. The table below shows the search operators
that are available for the different search attribute meta-types.

The set of search operators can be modified in the feeder class (see later in this
section):

Meta Type/

Property

Search Operators

Text (TE) Is (01), is not (02), is empty (03), contains (05), starts with (04)

Alpha numeric (AN) Is (06), is not (07), is empty (03), contains (05), is between (10), is
greater than (08), is less than (09), is greater than or equal to (19), is
less than or equal to (20)

Numeric (NU) Is (06), is not (07), is empty (03), is between (10), is greater than (08),
is less than (09), is greater than or equal to (19), is less than or equal
to (20)

Date (TD) Is (01), is not (02), is between (10), is earlier than (11), is later than
(12), is earlier than or on (21), is later than or on (22)

Enumeration (EN) Is (01), is not (02), is empty (03)

Boolean (BO) Is (01)

 Search Values
These are the values that are used for the search. There is one input field where the
user can enter a value. However, if the user chooses the search operator “is
between” two input fields are displayed in order to build up a range. For the operator
“is empty” no input field is displayed.

 Search Row
A search row is a combination of one search attribute plus one search operator plus
one search value (or two in case of a range).

 Search Query
A search query consists of one or several search rows.

Integration

You can configure a search component using the configuration editor for Floorplan Manager, FLUID.

IF_FPM_GUIBB_SEARCH Interface

The following tables describe the methods of the interface IF_FPM_GUIBB_SEARCH.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 128

If your application does not need a particular method, implement an empty method, otherwise the system will
dump.

You must implement at least the following methods:

 GET_DEFINITION

 PROCESS_EVENT

 GET_DATA

Methods

GET_DEFINITION:

Allows the feeder to provide all necessary information for configuring a search: A
list of available search attributes and optionally a list of columns for the result table.

Parameter Description

EO_FIELD_CATALOG_ATTR Is of type CL_ABAP_STRUCTDESCR. The components of this

object are the available search attributes. The simplest way to
provide a field catalog is to create a flat DDIC structure containing
all search attributes and then get the field catalog via

eo_field_catalog_attr ?=

CL_ABAP_STRUCTDESCR=>describe_by_name(<name of

DDIC structure>)

 The search GUIBB supports only flat structures. When
using deep structures, only the highest level fields are available.

ET_FIELD_DESCRIPTION_ATTR Optional: Here you can provide additional information for search
attributes, for example F4 helps or input field data format. You
can also change the set of search operators that are assigned to
a search attribute. For details see below.

EO_FIELD_CATALOG_RESULT Optional: Contains the columns that are possible to choose from
during configuration of the result table.

ET_FIELD_DESCRIPTION_RESULT Optional: Here you can provide additional information for the
columns of the result table, e. g. the column text.

EV_RESULT_TABLE_SELECTION_MODE This parameter determines the selection mode of the result table,
such single line selection or multiple line selection.

EV_MESSAGE Messages that will be displayed on the error page.

EV_ADDITIONAL_ERROR_INFO Additional information about error messages.

ES_OPTIONS Optional: Here you can adjust properties for the Search UIBB,
e.g. Modify standard texts (details see below).

ET_ACTION_DEFINITION Not used.

ET_SPECIAL_GROUPS Not used.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 129

Details for ET_FIELD_DESCRIPTION_ATTR: Optional. In this table you can provide
additional information for each search attribute

Attribute Description

NAME Name of the search attribute.

IS_OF_TYPE Overwrite the standard meta type.

TEXT Text for the search criteria that is displayed.

INCLUDE_OPERATORS Add operators to the standard set of operators.

EXCLUDE_OPERATORS Exclude operators from the standard set of operators.

ENUMERATION Value set for an enumeration search criteria. The dropdown is always
rendered as 'nullable', this means an empty entry in the value set is created in
addition.

It is possible to use an initial value as key but it is recommended not to do

this. It is not allowed to use the operator IS_BETWEEN if the value set

contains the initial value as key. In this case the NULL and the initial value for
the low and high field cannot be handled properly.

DDIC_SHLP_NAME DDIC F4 help.

OVS_NAME OVS name.

NULL_AS_BLANK Displays zeros as blanks.

SIGN_POS Sign left or right.

CONDENSE Compress input.

DATE_FORMAT Date format.

SHORT_TIME Do not display seconds.

MULTI_VALUE_STRUCT Structure of a multi-value field (details for multi-value fields see Appendix
Multi-Value Fields).

EXCLUDE_CRITERIA Not used at the moment.

FREE_TEXT_SEARCH This attribute is a free text search.

WD_VALUE_HELP WD value help.

MAX_1_VALUE This criteria is a singleton, i.e. it can be used just once in the selection

DEFAULT_OP Default operator for the search criteria. If there is one defined in the
configuration, the default operator from the configuration is used.

DEACTIVATE_VALUE_HELP No value help is displayed.

Details for ES_OPTIONS: Optional. Here you can adjust and overwrite standard
properties of the Search UIBB.

Attribute Description

TEXT_REPLACEMENT_FOR_HEADER New text for header.

TEXT_REPLACE_HIDE_SEARCH_CRIT New text for toggle link “Hide search criteria”.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 130

TEXT_REPLACE_SHOW_SEARCH_CRIT New text for toggle link “Show search criteria”.

LABEL_FOR_SAVED_SEARCHES New label for “Saved Searches”.

LABEL_FOR_SAVED_SEARCH_AS New label for “Save Search as”.

TEXT_SEARCH_BUTTON Text for search button.

TEXT_CLEAR_BUTTON Text for clear button.

TEXT_RESET_BUTTON Text for reset button.

TTIP_DELETE_SEARCH_BUTTON Tooltip for delete button.

TTIP_SAVE_SEARCH_BUTTON Tooltip for save search button.

TTIP_SEARCH_BUTTON Tooltip for search button.

TTIP_CLEAR_BUTTON Tooltip for clear button.

TTIP_RESET_BUTTON Tooltip for reset button.

APP_KEY_FOR_SAVING_SEARCHES Configuration-Id for saving a search.

HIDE_MAX_NUM_RESULT_FIELD Field “Max. Number of Results” is not displayed.

FREE_TEXT_SEARCH_ALLOWED Not used

RAISE_EVENT_ON_ATTR_CHANGE Raise event FPM_SEARCH_ATTR_CHANGED

RAISE_EVENT_ON_RESULT_LEAD_SEL The FPM event FPM_RESULT_SEL (constant

IF_FPM_GUIBB_SEARCH => FPM_RESULT_SELECTION) will

be raised.

FIXED_WIDTH_FOR_USE_IN_DIALOG If the search UIBB is used in a popup it should have a fixed width.

ALLOW_EXCLUDE_CRITERIAS All search criteria are allowed as exclude criteria. It is not possible
to choose just some search criteria as exclude criteria.

SET_MULTI_ATTR_TE_READ_ONLY Only for Multi-value fields: The search value of a multi value field
is set to read only. For details, see Appendix Multi-Value Fields.

MULTI_ATTR_SEPERATOR Only for Multi-value fields: The separator between two entries in
the formatted string of a multi-value field. For details, see
Appendix Multi-Value Fields.

MULTI_ATTR_NEW_LINE Only for Multi-value fields: The delimiter between two search
attributes in the formatted string of a multi-value field. For details,
see Appendix Multi-Value Fields.

PASS_INITIAL_SEARCH_ROWS All search criteria will be passed to the user in the feeder class,
i.e. also search criteria with initial input. The feeder method

GET_DATA always gets all search criteria in parameter

CT_FPM_SEARCH_CRITERIA passed.

USE_STD_DIALOG_MULTI_EDIT Only for Multi-value fields: The standard dialog id

'FPM_SEARCH_STD_DIALOG' (constant

IF_FPM_GUIBB_SEARCH=> FPM_SEARCH_STD_DIALOG) is

used for a multi-value field pop up. For details, see Appendix
Multi-Value Fields.

USE_EXTERNAL_FORMAT If this parameter is ABAP_FALSE, any range conversion of

search attributes is ignored. All attributes are typed and
transferred in internal format.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 131

GET_PARAMETER_LIST:

Called at design time and allows you to define a list of the parameters that the feeder class supports. This list
is used by the FPM Configuration Editor to provide the input fields for these parameters.

Parameter Description

RT_PARAMETER_DESCR Is returned from this method. It describes which parameters are possible. In
Field TYPE, the DDIC type needs to be entered.

INITIALIZE:

Called at runtime when the search UIBB is created. It is the first feeder method which is called from FPM.

Parameter Description

IT_PARAMETER Contains a list of the feeder parameters and the values for
them specified in the configuration.

FLUSH:

The first feeder method which is called during an event loop. Whenever an FPM event is triggered (this
includes all round trips caused by the search UIBB itself) this method is called. It tells the relevant user input
data of the search UIBB.

Parameter Description

IT_FPM_SEARCH_CRITERIA Contains the actual search criteria.

IV_MAX_NUM_RESULTS Contains the amount of maximum number of result objects.

IT_SELECTED_LINES_OF_RESULT Contains which lines within the result table are currently
selected.

PROCESS_EVENT:

Called within the FPM event loop, it forwards the FPM PROCESS_EVENT event to the feeder class. This

method should be used for actually conduction the search. But before doing so you should check for the ID

IF_FPM_GUIBB_SEARCH=>FPM_EXECUTE_SEARCH event. This FPM event is raised as soon as the user

presses the search button.

Parameter Description

IO_EVENT The FPM event which is to be processed.

IT_FPM_SEARCH_CRITERIA The current search criteria. The parameter

ES_OPTIONS=>PASS_INITIAL_SEARCH_ROWS is evaluated.

For details of this table see below.

IV_RAISED_BY_OWN_UI Tells whether the event was raised by the actual search UIBB or
by some other UIBB.

IV_MAX_NUM_RESULTS Tells the maximum number of found objects to be displayed in the
result table. Zero is allowed and should display all search results.

ET_MESSAGES The feeder class may return messages via this parameter. As
usual the messages will be displayed within the FPM message
area.

EV_RESULT The result of the event processing. There are 3 possible values:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 132

ev_result = if_fpm_constants=>gc_event_result-OK

ev_result = if_fpm_constants=>gc_event_result-

FAILED.

ev_result = if_fpm_constants=>gc_event_result-

DEFER

Details for IT_FPM_SEARCH_CRITERIA (structure FPMGB_S_SEARCH_CRITERIA): For each search

row, the following attributes are passed. If the parameter es_options- PASS_INITIAL_SEARCH_ROWS =

true in the method get_definition, then all search rows will be in this table. Otherwise, only the search

rows where there is an input in the search value field are included.

SEARCH_ATTRIBUTE Name of search attribute.

OPERATOR Current search operator.

LOW Search value in low field.

HIGH Search value in high field, this is just used for operator “is
between”.

MULTI_VALUE_ATTR Multi value (see Appendix Multi-Value Fields).

SIGN Include (I) or exclude (E) search criteria.

FREE_TEXT_SEARCH This attribute is a free text search.

IS_INITIAL_VALUE_EVALUATED This value is ABAP_TRUE if something was entered in the LOW
field. If the search criteria is Drop down list box and a value with
an initial key was selected then
IS_INITIAL_VALUE_EVALUATED = ABAP_TRUE and LOW

is initial.

APPL_FORMATTED_MV_STRING_TABLE Only for Multi-value fields: This parameter is used when the user
formats the multi-value data. The passed string table will be
displayed in the search row. (For details, see Appendix Multi-
Value Fields).

GET_DATA:

Called within the FPM event loop and forwards the FPM PROCESS_BEFORE_OUTPUT event to the feeder

class. The main purpose of this method is to transport data from the feeder class to the search UIBB.

With this method the user can also set initial data in the search UIBB. The user has to check for the event

IDs cl_fpm_event=>gc_event_start and if_fpm_guibb_search=>fpm_reset_search.

Check for event ID if_fpm_guibb_search=>fpm_execute_search and pass the search results from

the application to the search UIBB.

Parameter Description

IO_EVENT The FPM event which is to be processed.

IV_RAISED_BY_OWN_UI Tells whether the event was raised by the actual search UIBB or
by some other UIBB.

IT_VISIBLE_ATTRIBUTES Tells which search attributes are currently visible on the UI.

IT_SELECTED_COLUMNS_OF_RESULT Tells the columns that have been configured for the result table.

IT_SELECTED_SEARCH_ATTRIBUTES Tells the search attributes that have been configured.

ET_MESSAGES The feeder class may return messages via this parameter. As
usual the messages will be displayed within the FPM message
area.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 133

EV_SEARCH_CRITERIA_CHANGED Tells the search UIBB whether the search criteria have been
changed. If so then the search criteria on the screen will be
updated accordingly.

ET_RESULT_LIST If the application (feeder class) chooses the let the search UIBB
render the result table then it needs to inform the search UIBB
about content of the result via this parameter (but only if the event

ID is IF_FPM_GUIBB_SEARCH=>FPM_EXECUTE_SEARCH).

CT_FPM_SEARCH_CRITERIA Contains the current search criteria. All search criteria will be
passed from FPM to the user, i.e. also search criteria with initial
search values.

GET_DEFAULT_CONFIG:

Call this if you want to have a default configuration. Use it to call pre-configured form configurations when a
user starts the FPM configuration editor. This avoids the user, who uses a feeder class to create a search
having to create it from scratch.

Parameter Description

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_SEARCH_CONFIG: This object provides the API to

create a default configuration.

CHECK_CONFIG:

Call this if you want to make your own application-specific checks on the configuration in the FPM
Configuration Editor immediately before saving.

Parameter Description

IO_LAYOUT_CONFIG Of type IF_FPM_GUIBB_SEARCH_CONFIG: This object provides the API to

read the configuration to be saved.

ET_MESSAGES A list of messages which shall be displayed in the message region.

Enter, Reset, and Clear Buttons

Enter: When the cursor is positioned in a search value the search will start when pressing enter.

Clear: The Clear button clears all search fields, but does not reset the result list or the search statements
(that is, attributes and operators remain unchanged, and lines are not removed).The Clear button also clears
the Save Search As field and Saved Searches field, but the Maximum Number of Results field remains
unchanged.

Reset: The Reset button rolls all search criteria back to the predefined default state (that is, the predefined
combination of search criteria that was configured for the search). Reset Page clears all search fields as well
as the Save Search As field. Reset Page also clears the search result list if the standard result list is used.

Result List

There are two alternatives when defining a result list:

 Use the standard result list from the Search UIBB

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 134

This list is very simple; it has no toolbar. If you want to use this list, define the

parameters EO_FIELD_CATALOG_RESULT and ET_FIELD_DESCRIPTION_RESULT in the

method GET_DEFINITION.

The reset functionality works automatically.

 Use a separate List UIBB

You can either create a separate list in the floorplan or you can use the Composite
Search. When you use a List UIBB, you must implement the reset functionality and
you are also responsible for the communication between the Search UIBB and the
result list. You can use wiring, for example, for this communication.

If you use the composite search, you can add and configure a List UIBB directly in
the configuration editor of the Search UIBB (see below):

In the General Settings of the List UIBB there is a flag “Table Is Search Result List”. If
this flag is selected, then the visible row count is changed to 10. This flag is
automatically selected if you create the List UIBB in the configuration editor of the
Search UIBB.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 135

Exclude Criteria

This relates to the definition of search statements that are used to reduce the search result list.

Firstly, the feeder class must activate this feature using method GET_DEFINITION, parameter

ES_OPTIONS, and attribute ALLOW_EXCLUDE_CRITERIAS.

Secondly, in the FPM configuration editor, under General Settings, you enable or disable the Exclude Criteria
field.

If Exclude Criteria is enabled, the Add Criteria to Exclude link appears on the search screen at runtime.
When the link is pressed, a new Exclude Criteria area appears. It may contain all search criteria that have
been defined in the normal search.

When the search is executed, all results found by the 'exclude area' will be removed from the overall search
result before the search result is displayed.

Dependent Searches

This feature relates to the OVS value help in GUIBB search. There is now the possibility to influence the
content of the F4 value help dialog box based on what is currently selected for the search attributes on the
screen.

Example: A user selects France from the dropdown list in the search criterion Country at runtime;
accordingly, the search criterion City should only display cities in France in its dropdown list. To activate this

feature, you must implement the OVS interface IF_FPM_GUIBB_OVS_SEARCH.

This interface contains the method SET_CURRENT_SEARCH_CRITERIA. It indicates what is currently

selected in all search criteria rows before an OVS roundtrip is started.

Launchpad Component (GUIBB LAUNCHPAD)

This is a generic design template for displaying an overview or navigation block that is implemented using

the Web Dynpro component FPM_LAUNCHPAD_UIBB.

Structure

A navigation block is comprised of the following components:

 Main view
The main view on the left side can be shown as a Map, Directory, or Index.

The Map view shows a list of applications as displayed in the following example.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 136

There is a link with a large icon at the beginning of each group. This link has an
optional description. If you select this link, you navigate to the appropriate site.
Below this link are optional quick links. Quick links are part of the corresponding
area page and configured as visible in the Map view. If you choose one of the quick
links, you navigate to the application that was customized for this quick link.

Example of a Map view

The Directory view displays all entries of the launchpad, also grouped in the same
way as in the Map view, but subgroups are grouped by a LinkChoice UI element.

Example of a Directory view:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 137

The Index view is an alphabetical list of all applications of a launchpad. There is the possibility to search
for a specific string or application.

Example of an Index view

 Most Frequently Used
On the right side is a view for the most frequently used applications. The list of
applications depends on the applications that a user selects from the left side. If an
application is selected very often by a user, it has a better ranking than an
application that is chosen less often. The list can be prefilled by choosing the Prefill

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 138

Most Frequently Used button in the launchpad customizing. In the Available
Applications dialog box, an administrator can select the application to pre-fill the list.

 Related Links
This view contains applications that are useful for your daily work. It is a user
independent static list of applications and is defined by an administrator.

IF_FPM_GUIBB_LAUNCHPAD Interface

The following tables describe the methods of the IF_FPM_GUIBB_LAUNCHPAD interface.

If your application does not need a particular method, implement an empty method, otherwise the system will
dump.

If you do not need any dynamic changes, you do not need to implement this interface.

Methods of IF_FPM_GUIBB_LAUNCHPAD Interface

OVERWRITE_LAUNCHPAD_KEY:

Called at runtime and before the Launchpad customizing, defined in the configuration, is read. Allows the
feeder to specify another launchpad customizing. Depending on the parameter
EV_ALSO_CALLED_IN_PBO, this method is also processed in Process Before Output.

Parameter Description

IV_ROLE Role of a launchpad.

IV_INSTANCE Instance of a launchpad.

IR_EVENT FPM event

EV_ALSO_CALLED_IN_PBO Flag if this method is processed also in Process Before Output

EV_ANYTHING_CHANGED_IN_PBO Must be set to abap_true if anything was changed in Process
Before Output

MODIFY:

Called at run time before the content of the launchpad is displayed. It allows you to change some parts of the
launchpad customizing. You can, for example, change the link text or set an application defined by a user

parameter. Depending on the parameter EV_ALSO_CALLED_IN_PBO, this method is also processed in

Process Before Output.

Parameter Description

IR_NAVIGATION A reference to the IF_FPM_NAVIGATION interface.

IR_EVENT FPM event

EV_ALSO_CALLED_IN_PBO Flag if this method is processed also in Process Before Output

EV_ANYTHING_CHANGED_IN_PBO Must be set to abap_true if anything was changed in Process
Before Output

OVERWRITE_REL_LINKS_LPD_KEY:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 139

Called at runtime, before the Launchpad customizing for Related Links, defined in the configuration, is read.
Allows the feeder to specify another launchpad customizing for Related Links. Depending on the parameter

EV_ALSO_CALLED_IN_PBO, this method is also processed in Process Before Output.

Parameter Description

IV_ROLE Role of a launchpad.

IV_INSTANCE Instance of a launchpad.

IR_EVENT FPM event

EV_ALSO_CALLED_IN_PBO Flag if this method is processed also in Process Before Output

EV_ANYTHING_CHANGED_IN_PBO Must be set to abap_true if anything was changed in Process
Before Output

MODIFY_RELATED_LINKS:

Called at run time before the content of the launchpad for Related Links is displayed. It allows you to change
some parts of the launchpad customizing for Related Links. You can, for example, change the link text or set

an application as defined by a user parameter. Depending on the parameter EV_ALSO_CALLED_IN_PBO,

this method is also processed in Process Before Output.

Parameter Description

IR_NAVIGATION Reference to the IF_FPM_NAVIGATION interface. For further

information about this interface, see the FPM Cookbook.

IR_EVENT FPM event

EV_ALSO_CALLED_IN_PBO Flag if this method is processed also in Process Before Output

EV_ANYTHING_CHANGED_IN_PBO Must be set to abap_true if anything was changed in Process
Before Output

NAVIGATE:

Called within the FPM event loop, this method forwards the FPM PROCESS_EVENT to the feeder class. This

method can be used to cancel the navigation or to change or add an application or business parameters.

Parameter Description

IO_EVENT The FPM navigation event which is to be processed.

EV_RESULT The result of the event processing. There are 3 possible values:

 ev_result = if_fpm_constants=>gc_event_result-OK

 ev_result = if_fpm_constants=>gc_event_result-FAILED

 ev_result = if_fpm_constants=>gc_event_result-DEFER

Tabbed Component (GUIBB TABBED COMPONENT)

A generic design template for organizing additional application-specific views (UIBB) as tabs that is

implemented using the Web Dynpro component FPM_TABBED_UIBB.

You use this design template for an application-specific view (UIBB). For example, you could use the
template where you want to simultaneously display a selection list of business objects and the additional
details of those business objects in tabs without changing the view. You can determine the concrete
arrangement of the selection list, detail views, and data when configuring the Web Dynpro component

FPM_TABBED_UIBB.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 140

Structure

A tabbed component consists of two areas: the MASTER area and the TAB area, which can be arranged next

to or on top of one another. If you arrange the areas horizontally, the master area is placed to the left of the
tab area. If you arrange the areas vertically, the master area is placed above the tab area.

The content of the master area and the content of the tabs are determined by separate Web Dynpro

components, which you set when configuring the Web Dynpro component FPM_TABBED_UIBB.

If you do not set the Web Dynpro component for the master area, this area is not displayed in the application.
Instead, only the tabs appear with their application-specific views.

Changing the Tabbed Component Dynamically at Runtime

You may rename, add and remove tabs or child-UIBBs (or embedded UIBBs) from your tabbed component
during runtime.

To do so, proceed as follows:

1. Choose an application-specific Web Dynpro component and add the Web Dynpro

interface IF_FPM_TABBED_CONF_EXIT to the Implemented Interfaces tab of your Web
Dynpro component. This is one of the Web Dynpro components that provide you
with a child UIBB.

2. Save and activate the newly added interface. For example, somewhere in your code
you want to rename a tab. To do this, you must raise your own FPM event (e. g.

CHANGE_TAB_NAME) as the sample code below shows:

DATA: lo_fpm TYPE REF TO if_fpm,

lo_event TYPE REF TO cl_fpm_event.

lo_fpm = cl_fpm=>get_instance().

lo_event = cl_fpm_event=>create_by_id('CHANGE_TAB_NAME').

lo_event->mo_event_data->set_value(iv_key = 'ID'

lo_event->mo_event_data->set_value(iv_key = 'NAME'

iv_value = lv_tab_name).

lo_fpm->raise_event(io_event = lo_event).

3. In the component controller, implement the method OVERRIDE_CONFIG_TABBED. To
continue with the above example of renaming a tab, implement the following sample
code:

CASE io_tabbed->mo_event->mv_event_id.

WHEN 'CHANGE_TAB_NAME'.

DATA lv_name TYPE string.

DATA lv_id TYPE string.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 141

io_tabbed->mo_event->mo_event_data->get_value(EXPORTING iv_key = 'ID'

IMPORTING ev_value = lv_id).

io_tabbed->mo_event->mo_event_data->get_value(EXPORTING iv_key = 'NAME'

IMPORTING ev_value = lv_name).

io_tabbed->rename_tab(iv_tab_id = lv_id

iv_new_name = lv_name).

It is also possible to hide the master and the detail UIBBs at runtime. Methods have been introduced in the
IF_FPM_TABBED interface which can be used for this purpose. They are described below:

 SET_MASTER_UIBB_HIDDEN - To hide or unhide the master UIBB in the Tabbed
component. The application must pass the UIBB information (Component, Interface
View and Configuration Name) to FPM along with information about whether the
UIBB should be set to visible or invisible.

 SET_TAB_UIBB_HIDDEN - To hide the detailed (tabbed) UIBB in the Tabbed
component, similar to the master UIBB. Along with the UIBB details, the flag to set it
as visible or invisible should be sent to FPM.

Note that even though all master UIBBs can be hidden or removed, the last detailed UIBB on a tab cannot be
hidden or removed.

POWL Component (GUIBB POWL)

From NetWeaver 7.03 release onwards, Floorplan Manager (FPM) supports integration of the Standard
POWL application by providing a new POWL component, FPM_POWL_UIBB.

The most important features of the POWL component are as follows:

 The POWL UIBB can be configured as a master list within any floorplan

 All FPM UIBBs/GUIBBs can be configured as a detail view

 The detail view participates seamlessly in the FPM event loop

Assumptions

Users are familiar with the POWL concept and maintenance of the POWL Cockpit.

For more information, see the POWL wiki:
https://wiki.wdf.sap.corp/wiki/display/ERPOPSBNG/POWL+Framework.

Pre-requisites

This document focuses on the POWL component within FPM, and not specifically on POWL configuration.
Therefore, it is required that all POWL application-related entries such as Application_ID, POWL_type,
feeder implementation and POWL_query are already created with corresponding associations to users and
roles.

https://wiki.wdf.sap.corp/wiki/display/ERPOPSBNG/POWL+Framework.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 142

The POWL Component in FPM

With FPM‟s new configuration editor, FLUID, you can configure a POWL component as a UIBB. Depending
on the floorplan, you can configure a POWL component as a master view in the following ways:

 in a subview of an Object Instance (OIF) floorplan

 in a main step or a substep of a Guided Activity (GAF) floorplan

 in a section of an Overview Page (OVP) floorplan

 in a tabbed component in a master UIBB

 in a tabbed component in a tab UIBB

 in a dialog box

Configuring a POWL Component in FPM

To configure a POWL component, complete the following steps:

1. Launch FLUID, the FPM configuration editor
a. Select a Web Dynpro application configuration in the Object Navigator of the

ABAP Workbench.
b. On the Web Dynpro Explorer: Display Web Dynpro Configuration screen,

choose Web Dynpro Configuration TestExecute. The Web Dynpro
application is launched in a separate browser window.

c. In this window, go to the application's identification region and choose the
Configure Page button.

d. Choose OK to create a Customizing record or Cancel.
e. Choose the Edit button.

2. Add the POWL UIBB

a. On the object schema tab, select the place where a new POWL UIBB is to be
added.

b. Choose the Add UIBB button, and select POWL Component. The following
values are inserted automatically by the system to identify it as a POWL
component:

 Component: FPM_POWL_UIBB

 Window Name: POWL_WINDOW

c. Enter a configuration name. This is a mandatory field if you want to be able
to configure the POWL UIBB. It is not necessary to enter an existing
configuration; you can create a new configuration in the next steps.

d. (Optional) Choose the Attributes button on the main toolbar to display the
attributes of the UIBB. Edit the remaining attributes such as Location, Container

Stretching, Sequence Index and Instance ID.
e. Save your entries. If you are not using an existing POWL configuration, an

error message appears to say your configuration does not exist. You will
create this in the next steps.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 143

Note that you can also drag and drop an existing POWL component
configuration from the Repositories panel onto the object schema tab.

3. Configure POWL UIBB

a. In the object schema tab, choose the inserted POWL UIBB and choose the
Configure UIBB button.

b. In the Editor for the Web Dynpro ABAP Component Configuration screen, choose New
to create your new POWL configuration and enter the description and
package details in the dialog boxes that follow. The system opens the FPM
configuration editor with the name of the new configuration displayed in the
header.

c. Enter an existing Application ID. The input help selects existing configurations
from the POWL Cockpit. When you enter an Application ID, the system

automatically updates the field Configuration Name with FPM_POWL_CONFIG, the
default configuration provided by FPM.

Note: the default configuration FPM_POWL_CONFIG has the following attributes
enabled to ensure that the FPM configuration is compliant with the most
recent guidelines:

 Enable FPM

 Enable New UI

 Display ALV Dialog as Popup

You can choose your own POWL configuration and enable these attributes
yourself. The remaining attributes are features that POWL itself offers.

d. Choose Configure. In the Editor for the Web Dynpro ABAP Component Configuration
screen, choose Continue in Change Mode. The Web Dynpro default editor is
opened.

e. In the Component-Defined assignment block, choose the confData node to
display the POWL attributes.

f. Save your changes.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 144

Attributes of the POWL Component

FIELD NAME DESCRIPTION

Query ID The query which is activated on load of the application. Data is selected
from existing active queries in the POWL backend.

Application This is the POWL Application ID that is maintained in the POWL Cockpit. It
is a mandatory parameter.

forAllq This parameter sets all the query selection parameters of all queries with
the value of querySelpara.

querySelPara This is a query selection parameter for all active POWL queries.

If the checkbox for the field forAllq is selected, the value in querySelPara is
applicable for all queries; otherwise, the value in querySelPara is applicable
to the default query.

POWLDeltaRendering This parameter enhances the browser performance during rendering.

refreshAllq This parameter shall refresh all the active POWL queries registered for this
application on every load of the FPM application.

refreshOnLoad This parameter shall refresh the default active query on load of the
application.

Logon/server group These parameters can be used to set the details of the server group.

POWL Wfk Theme ty This parameter allows you to select the theme supported by POWL. The
available options are Object worklist and Workflow Worklist.

Configuration Name This is the default POWL configuration provided by FPM. You have an
option to change the configuration name. In this case, the custom
configuration should set the required parameters.*

* If you decide to have your own POWL configuration, you should select the
following parameters to comply with SAP UI guidelines:

 EnableFPM

 EnableNewUI

 DisplayAlvDialogAsPopup

Component This is the standard POWL component (POWL_UI_COMP) which is used by

FPM POWL UIBB.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 145

The POWL Component at Runtime

The POWL UIBB provides you with FPM events which can be handled in the following ways:

 In the detail UIBB
Events are handled in the feeder class of the GUIBBs or in the Web Dynpro

component which implements the IF_FPM_UI_BUILDING_BLOCK interface.

 In FPM`s CONF_EXIT methods
Events are handled by the applications themselves as required.

The following events are available:

EVENT NAME DESCRIPTION

FPM_GUIBB_POWL_ON_LEAD_SELECT

This event is triggered by FPM when a lead selection
event occurs in the POWL worklist. The event
parameters supplied with this event are:

 POWL_SELECTED_LINE_INDEX (type

integer)
The value is the selected index in the
POWL worklist.

 POWL_SELECTED_LINE_DATA (type ref

to data)
The data object refers to the data in
the line which is lead-selected in the
POWL worklist.

 POWL_CURRENT_TYPE (type

POWL_type_ty)
The type associated with the query
on which the lead selection event
has occurred.

FPM_GUIBB_POWL_ON_QUERY_SWITCH

This event is triggered by FPM when there is a query
switch operation performed by the user. The event
parameters supplied with this event are:

 POWL_SELECTED_QUERY_DATA (type

POWL_query_sty)

 The value is the details about the
newly selected query.

 POWL_CURRENT_TYPE (type

POWL_type_ty)

 The type associated with the newly
selected query. To handle the
functionality in the detail UIBB, you
can use just the information about
the type of the newly selected query

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 146

or all the details of the newly
selected query

FPM_GUIBB_POWL_ON_NEW_QUERY

This event is raised when you click the New Worklist
button on the POWL component toolbar.

FPM_GUIBB_POWL_ON_CHANGE_QUERY

This event is raised when you click the Change
Worklist button on the POWL component toolbar.

Actions from Detail UIBB

The following actions can be triggered by the detail UIBB:

 Trigger a refresh of the POWL worklist

This is achieved by raising the FPM event POWL_REFRESH. The FPM framework
informs the POWL to refresh the worklist.

 Request a follow-up from POWL

This is achieved by raising the FPM event POWL_FOLLOW_UP with the following event
parameters:

o ADD_EVENT_DATA (type ref to data)

o EVENT_PARAMETERS (type POWL_NAMEVALUE_TTY)

Note: It is not necessary to provide information about the detail component in the feeder class of the

POWL (method IF_POWL_FEEDER~GET_DETAIL_COMP) as the UIBB, configured in FPM, acts as a

detail for the POWL by reacting to the above FPM events.

Note: At runtime, the actions Query Switch and Refresh List result in the removal of any
previous lead selection in the table.

Navigation to Error Page

If no POWL Application ID is provided in the configuration of the POWL component, the FPM application is
not launched; instead, the system navigates to the standard error page as shown below.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 147

Composite Component (GUIBB Composite)

A composite component is a generic design template allowing you to group application-specific views
(UIBBs) within a single UIBB.

It is implemented using the Web Dynpro component FPM_COMPOSITE_UIBB.

The information displayed in a composite component at runtime is determined by the feeder class assigned
to the configurations of the individual Web Dynpro components within the composite component

FPM_COMPOSITE_UIBB.

The main use case is the Overview Page Floorplan (OVP) where composite UIBBs can be used to arrange
several UIBBs in an assignment block. However, Composite UIBBs can be used in any floorplan where
several UIBBs need to be grouped together.

You use this design template when you want to display data in different ways within a single UIBB. For
example, you can display a form, a table and a search component all within one UIBB. You can determine
the concrete display of the data in a composite component when configuring the Web Dynpro component

FPM_COMPOSITE_UIBB.

Composite UIBBs explicitly do not serve Master/Detail purposes.

Structure

A Composite UIBB has the following possible layouts:

 One Column Layout (Standard)

The maximum number of UIBBs is 3 and these are arranged below each other.

 Two Column Layout (50:50)

The maximum number of UIBBs is 6 and these are arranged with a maximum of 3
rows and 2 columns.

A UIBB can be stretched over several rows or columns in both layouts.

Editing the Composite Component

You edit this component using the FPM configuration editor, FLUID.

Changing the Composite UIBB dynamically at Runtime

You may add, remove and get UIBBs from your composite UIBB component during runtime.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 148

To do this, proceed as follows:

1. Choose an application-specific Web Dynpro component and add the Web Dynpro interface

IF_FPM_CMPST_CONF_EXIT to the Implemented Interfaces tab of your Web Dynpro component.

This is one of the Web Dynpro components that provide you with a child UIBB.
2. Save and activate the newly added interface.

3. In the component controller, implement the method OVERRIDE_CONFIG_COMPOSITE.

Alternatively, you can choose to use a class-interface instead of a Web Dynpro interface. The class interface

is IF_FPM_COMPOSITE_CONF_EXIT.

Analytical Components

You can use analytical components to embed analytical and planning content into transactional applications
in Floorplan Manager without development effort.

You can either use the standard application List Report on Analytic Query (WDA_BS_ANLY_LIST_OVP) or

build your own applications for list reporting and planning purposes or modify an existing application.

In addition to the user-interface building blocks (UIBBs) provided by the Floorplan Manager, you can add
analytical UIBBs to FPM applications without development effort.

The following analytical UIBBs/components exist:

 Analytics List Component (WDC_BS_ANLY_LIST_ALV)
You can display selected data in a list. If you use a query that is ready for input,
you can also use a list component for planning purposes.

 Hierarchical List (Tree) Component with Analytics Feeder Class
You can use the Web Dynpro component FPM_TREE_UIBB of the Floorplan

Manager with an analytics feeder class CL_BS_ANLY_TREE_FEEDER to display
selected data in a hierarchical list.

 Analytics Search Component with Analytics Feeder Class

You can use the Web Dynpro component FPM_SEARCH_UIBB of the Floorplan

Manager with the analytics feeder class CL_BS_ANLY_LIST_SEARCH_FEEDER to
restrict the amount of data selected.

 Chart Component (BS_ANLY_CHART_UIBB)
You can display selected data in a chart. Feeder class is

CL_BS_ANLY_CHART_FEEDER.

 Generic Analytic Application Controller (WDC_BS_ANLY_APPCONTROLLER)

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 149

This is a central module that controls the interaction between the different
components and events.

You can use these components to display the results of an analytic query in a list or chart, and to restrict the
results in a selection screen with query variables.

These analytical components are part of the Business Suite Foundation layer (Software Component

SAP_BS_FND) and, as such, are not available to all applications.

Analytics List Component

The analytics list component WDC_BS_ANLY_LIST_ALV uses the SAP List Viewer (ALV) to display the data

of an analytic query (BI query) as a table or with Crystal Reports.
You can sort and filter data, define your own view, print and export lists to Microsoft Excel.

You can change the List Drilldown by choosing the Drilldown Settings pushbutton at runtime.

If you choose Crystal Reports to display the data, you can change the formatting to meet your requirements
and you can export the data from the Crystal Report view to files with the different formats.

You can navigate from the list to predefined destinations, such as master data reports or transactions (for
example determine navigation targets through another launchpad or using Sender/Receiver Assignments

defined in transaction RSBBS).

If you have defined any destinations, you can choose the Goto pushbutton at runtime to display all the
destinations available.

You can use predefined events if you want to execute planning functions and planning sequences:

 The FPM event for executing a planning function is BSA_PLFUNC with the parameters PLFUNC and

FILTER for the name of the planning function and the filter.

 The FPM event for executing a planning sequence is BSA_PLSEQU with parameter PLSEQU for the

planning sequence.

You can use these events in toolbar elements such as buttons or button choices.

Component Configuration

The configuration editor consists of the following areas:

 General Settings, e.g. query name or drilldown settings

 List Settings, e.g. info allowed or export allowed

 Navigation Settings, e.g. Launchpad settings

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 150

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 151

Tree Component with Analytics Feeder Class

The tree component FPM_TREE_UIBB with the analytics feeder class CL_BS_ANLY_TREE_FEEDER allows

you to display an analytics query in a hierarchical display.

However, the query has to fulfill one of the following conditions so that it can be displayed in the tree
component:

 Either the query contains exactly one characteristic in the row drill-down and has a hierarchy on
this characteristic

 Or the query contains several characteristics in the row drill down and has the feature “Display
Rows as hierarchy” switched on

The list component supports the following functions:

 You can use analytic queries that are ready for input.

 You can display multiple attributes.

 You can trigger planning functions.
You can use one of the following feeder actions:

o For planning functions: Feeder actions BSA_PLFUNC_01 to BSA_PLFUNC_10

o For planning sequences: Feeder actions BSA_PLSEQU_01 to BSA_PLSEQU_10

You can use the following event parameters:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 152

o For the feeder action BSA_PLFUNC_01 to BSA_PLFUNC_10: Select the planning function

and filter.

o For the feeder action BSA_PLSEQU_01 to BSA_PLSEQU_10: Select the planning sequence.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 153

Search Component with Analytics Feeder Class

The search component FPM_SEARCH_UIBB with the analytics feeder class

CL_BS_ANLY_LIST_SEARCH_FEEDER allows you to display the BW variables of one or more queries,

filters, planning functions, and planning sequences.

You can enter variable values to restrict the query selection or as planning parameters. Additionally, you can
save the set of variable values you have specified as a search variant for future use.

The following restriction applies:

In SAP NetWeaver Business Warehouse (SAP NetWeaver BW), you can select the 'Not assigned' value by
entering a number sign ('#'). In some cases, this is not allowed in the analytics search component:

- For variables based on characteristics with the data types NUMC (Character String with Only

Digits), DATS (Date) or TIMS (Time), you can enter a zero instead of a number sign to select

all variables.

- For variables based on characteristics with special conversion routines, for example,

0CALMONTH with conversion routine PERI6, you cannot enter a number sign.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 154

Chart Component with Analytics Feeder Class

The chart component BS_ANLY_CHART_UIBB with the analytics feeder class CL_BS_ANLY_CHART_FEEDER

allows you to display an analytic query in a graphical form.

The chart component can be used to visualize data series as a chart. For example vertical bar charts
(columns):

You can determine the concrete display of the data in a chart when configuring the Web Dynpro component

BS_ANLY_CHART_UIBB.

The following chart types are available:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 155

The following chart types are not supported:

 Gantt

 Milestone trend analysis (MTA)

 Heatmap

 Time bar

 Stacked time bar

 Time column

 Stacked time column

Structure

A chart consists of the following areas:

 Toolbar

 Graphic

 Header

The chart can display/use one or several data series. Data series consist of points. The points of the different
series can be grouped into categories.

For more information, see BW documentation under Editing Charts and BusinessGraphics.

The component-defined view gives you the opportunity to specify:

 The chart type or XML chart configuration file.

 The tooltip, width and height of the chart UIBB.

 The possibility to propagate chart selection events to the feeder class.

Pie

Pipeline

Polar

Profile
Area

Profiles

Radar

Speedo-
meter

Split
Pie

Stacked
Area

Stacked
Bars

Stacked
Columns

Stacked
Lines

Stacked
Profile
Area

Stacked
Profiles

Stacked
Radar

http://help.sap.com/saphelp_nw70ehp1/helpdata/en/0c/95c83956852b51e10000000a114084/frameset.htm
http://help.sap.com/saphelp_nw70ehp1/helpdata/en/ed/258841a79f1609e10000000a155106/content.htm

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 156

 The possibility to export the chart as GIF file.

 The header of the chart UIBB.

 The toolbar of chart UIBB.

 The title and units of the chart axes.

The feeder class is responsible to return the definition of the series, data points and categories. The feeder

class CL_BS_ANLY_CHART_FEEDER, which displays BI queries, defines data points, series and categories

as follows:

 Each key figure value of a BI query in a data column and a certain row represents a data point (a
single cell, which displays a key figure).

 Each data column (column with key figure values) of a BI query becomes a series.

 Each row of the BI query becomes a category. The text of a category is derived from the
characteristic value combination of the row.

Integration

You can configure a chart component using the Chart Configuration Editor of the Floorplan Manager.

IF_BS_ANLY_GUIBB_CHART Interface

The feeder class of the CHART UIBB must implement this interface. The following tables describe the

methods (and the attributes) of the IF_BS_ANLY_GUIBB_CHART interface.

(Optional) You can use the additional interface IF_BS_ANLY_GUIBB_CHART_EXT and implement it in your

feeder class.

If your application does not need a particular method, implement an empty method, otherwise the system will
dump.

You must implement at least the following methods of the interface IF_BS_ANLY_GUIBB_CHART:

 GET_DEFINITION

 GET_DATA

Methods

GET_DEFINITION:

Allows the feeder to provide all necessary information for configuring a chart: the definition of the chart
categories and chart data series; the list of toolbar actions (FPM events).

Parameter Description

IS_CHART_TYPE
Contains information about the chart type: Does it have a category,
time and / or value axis?

ET_CATEGORY
Definition of the chart categories (this is only required if the chart type is
category based)

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 157

GET_DEFINITION:

Allows the feeder to provide all necessary information for configuring a chart: the definition of the chart
categories and chart data series; the list of toolbar actions (FPM events).

Parameter Description

ET_SERIES Definition of the chart series

ET_TOOLBAR Definition of the chart toolbar

ES_MESSAGE Error message

EV_ADDITIONAL_ERROR_INFO Additional error information

ES_SELECTION_BEHAVIOR
Defines, whether single or multiple selection (of points, categories or
series) in the chart during runtime will be supported in principal.

EF_STORE_XML_IN_CONTEXT

EF_STORE_XML_IN_CONTEXT = space: The chart configuration file is

stored in the MIME Repository; at runtime the configuration file can be
changed.

EF_STORE_XML_IN_CONTEXT = „X‟: The configuration file is stored in

the Web Dynpro context and cannot be changed at runtime.

GET_PARAMETER_LIST:

Called at design time and allows you to define a list of the parameters that the feeder class supports. This list
is used by the FPM Configuration Editor to provide the input fields for these parameters.

Parameter Description

RT_PARAMETER_DESCR
Is returned from this method. It describes the parameters. In Field

TYPE, the DDIC type needs to be entered.

INITIALIZE:

Called at runtime and design time when the list is created. It is the first feeder method which is called from
FPM.

Parameter Description

IT_PARAMETER
Contains a list of the feeder parameters and the values for them
specified in the configuration.

IO_APP_PARAMETER
Contains a reference to an interface for reading Web Dynpro / FPM
application parameter

IV_COMPONENT_NAME ID of the Web Dynpro component

IS_CONFIG_KEY Configuration key of the Web Dynpro component

IV_INSTANCE_ID FPM Instance ID

FLUSH:

The first feeder method which is called during an event loop. Whenever an FPM event is triggered this
method is called (this includes all round trips caused by the chart itself). Use it to forward changed chart data
to other components in the same application.

Parameter Description

IT_DATA Chart Data

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 158

PROCESS_EVENT:

Called within the FPM event loop and forwards the FPM PROCESS_EVENT to the feeder class. Here the

event processing can take place and this is where the event can be canceled or deferred.

Parameter Description

IO_EVENT

The FPM event which is to be processed. The parameters of the event
are retrieved with the method call

io_event->mo_event_data->get_keys().

EV_RESULT

The result of the event processing. There are 3 possible values:

 EV_RESULT = IF_FPM_CONSTANTS=>GC_EVENT_RESULT-

OK

 EV_RESULT = IF_FPM_CONSTANTS =>

GC_EVENT_RESULT-FAILED

 EV_RESULT = IF_FPM_CONSTANTS =>

GC_EVENT_RESULT-DEFER

IV_RAISED_BY_OWN_UI
Indicates whether the event was raised by the own instance of the chart
UIBB or by any other UIBB

ET_MESSAGES A list of messages which shall be displayed in the message region.

GET_DATA:

Called within the FPM event loop, it forwards the FPM PROCESS_BEFORE_OUTPUT event to the feeder class.

Here you specify the list data after the event has been processed.

Parameter Description

IO_EVENT The FPM event which is to be processed.

IV_RAISED_BY_OWN_UI Indicates whether the event was raised by the own instance of the chart
UIBB or by any other UIBB

EV_DATA_CHANGED For performance reasons, the chart UIBB adjusts the data in the list
only if the data has been changed. To indicate this, set this flag
whenever you change the data to be displayed within this feeder.

EV_TOOLBAR_CHANGED For performance reasons, the chart UIBB adjusts the toolbar of the
chart only if the toolbar has been changed. To indicate this, set this flag
whenever you change the toolbar within this feeder.

ET_MESSAGE A list of messages which shall be displayed in the message area.

CT_DATA Chart Data

CT_TOOLBAR Chart Toolbar

CS_CHART_SETTINGS Chart settings (various chart texts which can be changed at runtime;
furthermore the chart UIBB can be set to invisible)

GET_DEFAULT_CONFIG:

Called when creating a new configuration. Use it to provide pre-configured chart configurations when a user
starts the FPM Configuration Editor.

Parameter Description

IO_LAYOUT_CONFIG
Of type IF_BS_ANLY_GUIBB_CHART_CONFIG: This object provides

the API to create a default configuration.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 159

CHECK_CONFIG:

Implement this if you want to make your own application-specific checks on the configuration in the FPM
Configuration Editor immediately before saving.

Parameter Description

IS_CHART_TYPE
Contains information about the chart type: Does it have a category,
time and / or value axis?

IO_LAYOUT_CONFIG
Of type IF_BS_ANLY_GUIBB_CHART_CONFIG: This object provides

the API to read the configuration to be saved.

ET_MESSAGES A list of messages which shall be displayed in the message region.

Chart Configuration for the Floorplan Manager

You use the Chart Configuration to adjust a chart within an application to your specific business
requirements. This is done by configuring the chart components.

Features

The Chart Configuration consists of the following work areas:

 Toolbar

For example, you can assign the analytics feeder class CL_BS_ANLY_CHART_FEEDER.

 Preview

In the preview, the chart in the current configuration is displayed so as to give you a
picture of the layout of the chart.

 Configuration Dialog

Attributes of chart that can be changed are displayed in the configuration dialog.

The attributes comprise the following areas: General Settings, Chart Appearance,
Primary Axis Text, and Selection in Chart.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 160

Chart Appearance

You can switch between the SAP-defined default settings and your own Customizing scheme that you
created using the SAP Chart Designer.

Using the Chart DesignerError! Reference source not found. (or even a text editor) you can define many
more settings than directly using the Error! Reference source not found..

To define the chart appearance (Define Chart Appearance by) you have the following options:

o Default Settings
The configuration of the chart is exclusively based on the Web Dynpro configuration
settings. You can configure here e.g. the chart type and the titles and units of the chart
axis.

As long as the user has not imported a Customizing scheme, this dropdown list box is
disabled and Default Settings option is selected.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 161

o Customizing Scheme (Chart Designer)
In addition to the parameters that are directly available in configuration dialog, you can
influence the chart‟s appearance by defining a chart Customizing scheme.

The configuration of the chart is based on an XML chart Customizing file. This should be
used for more complex charts definitions. For more information, see documentation of

dataelement BS_ANLY_CUST_TYPE.

You can use the following tools:

 A text editor
This can be any text editor such as Notepad. However, this provides
no syntax support and a low user experience.

 SAP Chart Designer
This is already implemented and can be downloaded from the SAP
Developer Network.
You can make your changes in the Chart Designer or in the

transaction BS_ANLY_CD (which calls the Chart Designer from SAP GUI.
For more information see, Chart Designer.

Chart Customizing File

This field is editable when you have chosen Customizing Scheme (Chart Designer).

When using the parameter EF_STORE_XML_IN_CONTEXT in the feeder class method GET_DEFINITION

you have the following options for configurations based on a chart Customizing file:

o EF_STORE_XML_IN_CONTEXT = space: This is the default setting. The chart configuration file is

stored in the MIME Repository; at runtime the configuration file can be changed.

o EF_STORE_XML_IN_CONTEXT = „X‟: The configuration file is stored in the Web Dynpro context

and cannot be changed at runtime.

The Chart Configuration launches from the configuration editor of the Floorplan Manager automatically when

you start the configuration of an application-specific UIBB that uses the BS_ANLY_CHART_UIBB Web

Dynpro component.

Adding a Chart Component

You add a Chart Component to an application configuration in the same way that you add components
provided by FPM (see the section Adding an Existing UIBB to an Application). When you insert the Chart
UIBB in the <Floorplan Name> Schema tab page, the following information is automatically inserted into the
fields below:

 Component: BS_ANLY_CHART_UIBB

 Window Name: CHART_WINDOW

Use the field help to select a different window if required.

Use the field help to select the configuration name.

http://help.sap.com/saphelp_nw70ehp1/helpdata/de/42/e37dcc5faa3ee9e10000000a1553f7/content.htm

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 162

When configuring the Chart component, choose the Feeder Class button in the General Settings tab and

select CL_BS_ANLY_CHART_FEEDER (or your own feeder class). The system lists all classes implementing

the interface IF_BS_ANLY_GUIBB_CHART. In the Edit Parameters dialog box, enter an Analytic Query.

The following information is useful when configuring a Chart Component.

FPM Events and the Chart Component

As the Chart Component is itself an FPM UIBB, it takes part, when it is visible, in each FPM event loop. The
Chart Component may also raise FPM events itself. These events are raised from the following three
sources:

 Chart Selection Events

FPM events are raised when selecting a series, category or point in the chart.
However this does only happen if the flag Propagate Selection Events is set in the
chart configuration.

The information about the point, category and / or series is added as event
parameters to this FPM event:

o IF_BS_ANLY_GUIBB_CHART => GC_EVENT_POINT_SELECTED

o IF_BS_ANLY_GUIBB_CHART => GC_EVENT_CATEGORY_SELECTED

o IF_BS_ANLY_GUIBB_CHART => GC_EVENT_SERIES_SELECTED

 Toolbar Events

Each toolbar element raises an FPM event. In this case, the event ID is the action

ID (which was defined by the feeder class in method GET_DEFINITION). Some
toolbar elements may contain specific values of interest (for example user inputs),
such as the toggle button, the input field and the dropdown list box.

 New Graphic

A new graphic, e.g. with a new chart type, a new chart configuration file or with new

series, is displayed by the event IF_BS_ANLY_GUIBB_CHART =>

GC_EVENT_NEW_GRAPHICS.

For more information about charts, see BW documentation under Editing Charts.

For more information about analytical UIBBs, see documentation on SAP Help Portal http://help.sap.com

under SAP Business Suite Prozesses and Tools for Enterprise Applications Analytics Infrastructure
Analytical Components in Floorplan Manager Applications (CA-EPT-ANL) and on SDN

http://www.sdn.sap.com under BPX Community Home SAP Business Suite SAP Business Suite
Analytics.

http://help.sap.com/saphelp_nw70ehp1/helpdata/en/0c/95c83956852b51e10000000a114084/frameset.htm
http://help.sap.com/
http://www.sdn.sap.com/

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 163

Application-Specific Analytics UIBBs

You can also develop application-specific analytical UIBBs for special purposes by implementing the

IF_FPM_UI_BUILDING_BLOCK Web Dynpro interface.

To access analytical data in these UIBBs, you must use our analytical Application Programming Interface
(API). With this API, you can read data, set variable values, write back data, and execute planning functions.

Analytical Application Programming Interface (API)

The Analytical Application Programming Interface (API) consists of the interface and classes in the package

interface BS_ANLY_LIST_REPORTING.

The class List Reporting: Services (CL_BS_ANLY_LIST_SERVICES) provides methods for the instantiation

of needed objects: data instance, filter instance, planning function instance, planning sequence instance, RRI
instance, and selection instance.

For the instantiation, the following methods are used:

 GET_DATA_INSTANCE

Retrieves an instance of a data object based on an Analytic Query and returns a reference to

IF_BS_ANLY_LIST_DATA.

 GET_FILTER_INSTANCE

Retrieves an instance that is required to execute a planning function and returns a reference to

IF_BS_ANLY_LIST_FILTER.

 GET_PLFUNC_INSTANCE

Retrieves an instance of a planning function and returns a reference to IF_BS_ANLY_PLFUNC.

 GET_PLSEQU_INSTANCE

Retrieves an instance of a planning sequence and returns a reference to IF_BS_ANLY_PLSEQU.

 GET_SELECTION_INSTANCE

The method is called with import parameters list of queries, filters, planning functions, and sequences.
The method retrieves an instance of a set of BW variables and returns a reference to

IF_BS_ANLY_SELECTION. The variables of the used BW queries, filters, planning functions, and

sequences are merged so that no variable occurs twice in the selection instance.

 GET_RRI_INSTANCE

Retrieves an instance for a Report-Report-Interface and returns a reference to IF_BS_ANLY_LIST_RRI.

The class provides method SAVE to save application data.

The following methods are required for read-only scenarios:

 IF_BS_ANLY_LIST_DATA->READ

Reads data of an Analytic Query

 IF_BS_ANLY_SELECTION->GET_VARIABLES

Reads metadata of variables

 IF_BS_ANLY_SELECTION->READ

Reads variable values

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 164

 IF_BS_ANLY_SELECTION->WRITE

Writes back changed variable values

 IF_BS_ANLY_SELECTION->CHECK:

Checks entered variable values. Note that CHECK has to be called after WRITE otherwise the

changed variable values are not required.

 IF_BS_ANLY_LIST_RRI~GET_RECEIVERS:

Retrieves the Report-Report interface targets.

 IF_BS_ANLY_LIST_RRI~CALL_RECEIVER:

Launches a target.

For planning scenarios, you need additional methods:

 IF_BS_ANLY_LIST_DATA->WRITE_CELLS

Writes back changed data cells if the query is input-enabled.

 IF_BS_ANLY_LIST_DATA->CHECK

Checks write-back cells and sends the changes to the planning buffer. Note that CHECK has to be

called after WRITE_CELLS otherwise the changed values are not visible.

 IF_BS_ANLY_PLSEQU->EXECUTE

Executes a planning sequence.

 IF_BS_ANLY_PLFUNC->EXECUTE

Executes a planning function. An instance of a filter object must be sent in this method. The filter
determines the set of data the planning functions processes.

FPM Event Loop for Analytics and Planning

The following graphic describes the FPM event loop for Analytics and Planning:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 165

Analytics

Application

Controller

Analytics

Search GUIBB

Analytics List

GUIBB
Planning Model

Foorplan

Manager

Action

Flush

Process Before Output

Flush

Process Before Output

Before Process Event

Write Data fromUI into model

Write Data fromUI into model

Check Input

Execute Planning Function

Read Data from model

Read Data from model

Note:

The sequence describing how the used UIBBs are processed in the Flush and Process Before Output

phases is not defined.

User actions trigger the FPM event loop:

 In the Flush phase:

o The data entered on the user interface is written back to the model. This must be done
separately for all GUIBBs, for example, for the Analytics List Component and the Search
Component.
Note:
In this phase, the data has not been written back to the planning buffer and the variables
have not been submitted.

o Analytics List Component

 IF_BS_ANLY_LIST_DATA->WRITE_CELLS() is called here.

o Search Component

 IF_BS_ANLY_SELECTION->WRITE() is called here.

 In the Before Process Event phase:

o The user input is checked and written back to the buffer.
o The sequence describing how the used UIBBs are processed by FPM is not defined. As a

result, the „Process Event‟ phase of the single GUIBBs cannot be used here. Instead, the

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 166

central application controller WDC_BS_ANLY_APPCONTROLLER is used. The following

processing sequence must be defined in the application controller:

o First, entered plan data is submitted in the analytics list component.
 IF_BS_ANLY_LIST_DATA->CHECK() is called here.

o Then, variable values are submitted in the Search Component.
 IF_BS_ANLY_SELECTION->CHECK() is called here.

o Finally, depending on the type of user action, the following steps are also
executed:

 Execute Planning Function IF_BS_ANLY_PLFUNC->EXECUTE()

 Execute Planning Sequence IF_BS_ANLY_PLSEQU->EXECUTE()

 Save Data to database CL_BS_ANLY_LIST_SERVICES=>SAVE()

 In the Process Before Output phase:

o The new data is transferred to the user interface. This can be done separately for all
GUIBBs.

o Analytics List Component

 IF_BS_ANLY_LIST_DATA->READ() is called here.

o Search Component

 IF_BS_ANLY_SELECTION ->READ() is called here.

REUSE UIBB (RUIBB)

Reuse UIBBs (RUIBBs) are intended to be reused by other applications. You can add them to your
application configurations and immediately start using their functionality without having to write lots more
additional code.

The Attachment RUIBB and Notes RUIBB are typical examples of RUIBBs.

What is the Difference between a RUIBB and a GUIBB?

A Generic UIBB (GUIBB) is a pure UI pattern which itself does not support any business functionality. There
is always the need to provide the business functionality.

A RUIBB is, more or less, a complete component offering common business logic and a user interface to go
with it.

Attachment RUIBB

RUIBB Interface

FPM provides a marker interface, IF_FPM_RUIBB, which must be implemented by the WD components.

This interface can also be used by other applications, to turn a UIBB into a RUIBB.

For the Attachment RUIBB, the IF_FPM_RUIBB interface is implemented by the attachment 'wrapper'

component FPM_ATTACHMENT_WRAPPER.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 167

KPRO Configuration for Attachment RUIBB

KPRO provides the functionality to store the attachments. This is the basic KPRO configuration required for

Attachment RUIBB. It does not cover all aspects of KPRO.

1. Create a Content Table

In transaction SE11, you can copy a row from table SDOKCONT1, for example

FPM_T_ATTACHMENT.

2. Create a Content Repository

Open transaction OAC0, create a new content repository and specify the following details (note that

the table below shows only sample details):

Field Value

Content Rep. FPM_ATTACHMENT

Description FPM Attachment

Storage Type SAP System Database

Rep. Sub-Type Normal

Version No. 0046

Contents Table FPM_T_ATTACHMENT

3. Create a Category
In transaction OACT, enter the category name and the content repository you created in the

previous step.

4. KPRO Modeling

(I) Create a Document Area

In transaction DMWB, choose Create to display the Create Entity dialog box. Select the

Document Area radio button and specify the Document area and Description. Save and

activate the Document area

(II) Create a PHIO Class

 In the Document Modeling Workbench hierarchy , expand the folder for the document

area you have just created. In the context menu for PHIO classes , select the Create
option.

 Select Real PHIO Class and enter the PHIO class and description.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 168

Creating a PHIO Class

 In the Document Modeling Workbench hierarchy , double-click the newly created PHIO
class and, on the Standard Attributes tab page, specify the following attributes:

Attribute Value
Auto_Index X

Storage_category Specify the category you created in the previous step and

mark it as Exposed

PHIO PROPERTIES

 Choose the Tabulation button.

 Choose the Copy Table Set button.
 Specify the Name Prefix for Copy Tables and execute. Choose OK for all the information

dialog boxes that appear.
 In the Document Modeling Workbench hierarchy , double-click on the PHIO class. On

the Instance Attribs tab page, choose the Standard button and select all the attributes
and choose OK.

Instance Attributes for the PHIO

 Save and activate.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 169

(III) Create IO Attribute

 In your document area inside the Document Modeling Workbench hierarchy, choose
Create in the context menu for the IO Attributes folder.

 Enter the IO Attribute and Description and choose OK.
 Double-click on the newly created IO attribute and enter the attribute values for

Field_Name and Table_Name (see screenshot below).

IO Attributes

 Save and activate.

(IV) Create LOIO Class

 Repeat the steps to create a PHIO class as previously described.

 On the Instance Attribs tab page, after adding the standard attributes, choose the Insert
Row icon and add the IO attribute which you created in Step III.

 Save and activate.

(V) Create a Connection Space

 In the Document Modeling Workbench hierarchy, right-click the Connection Spaces
folder and choose Create. Enter a Class Connection Space and Description.

 Double-click the newly-created connection space, and add the following:

- Select Insert Class and add PHIO class as Source class.

- Select Insert Class and add LOGOBJECT as relationship class.
- Select Insert Class and add LOIO class as Target class.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 170

CONNECTION SPACE

Adding the Attachment RUIBB in FLUID

The Attachment RUIBB can be added to a Floorplan Manager application at any time. Depending on the

floorplan and the application-specific views already embedded, you can position an attachment RUIBB

component in one of the following ways:

 in a subview of an object instance

 in a main step of a guided activity

 in a substep of a guided activity

 in a content area of an OVP

 in a tabbed component in a master UIBB

 in a tabbed component in a tab UIBB

 in a composite UIBB

Prerequisites

If the Attachment RUIBB needs to be configured, KPRO configuration should be complete (Refer to KPRO

Configuration for Attachment RUIBB).

Procedure

1. In the Preview panel, select the place where you want to add the Attachment RUIBB.

2. If the attachment RUIBB configuration already exists, search for it in the Repositories panel and drag

and drop it in the required position.

3. If a new UIBB needs to be added, choose Add UIBB in the floorplan schema tab.

4. Now specify the UIBB as an attachment component by entering the following values in the Properties

panel or object instance schema:

 For Component, enter FPM_ATTACHMENT_WRAPPER.

 For View, enter ATTACHMENT_WINDOW.

5. Enter a configuration name.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 171

CONFIGURING ATTACHMENT RUIBB

6. Choose Configure UIBB

7. Enter the following KPRO Parameters

1. KPRO PHIO class - Mandatory

2. KPRO LOIO class - Mandatory

3. KPRO Parameter Name - Mandatory

4. (Configured as IO attribute in KPRO DMWB)

5. KPRO Parameter ID - Optional (It can be provided here or during

 runtime via FPM_SET_DOCUMENT_DETAIL

 event).

8. Default List Configuration(for Attachment RUIBB) - FPM_ATTACHMENT_LIST

Default List feeder class (for Attachment RUIBB) - CL_FPMGB_ATTACHMENT

ATTACHMENT RUIBB CONFIGURATION

9. The default List configuration is FPM_ATTACHMENT_LIST. The standard functions provided by FPM are

configured in FPM_ATTACHMENT_LIST. If the applications wants to add or delete features, then the

application must specify its own list configuration.

10. If more than one attachment needs to be configured, enter the Instance ID in the List configuration.

11. If the application overrides the default list configuration(FPM_ATTACHMENT_LIST) with an application-

specific configuration, the feeder class can be CL_FPMGB_ATTACHMENT or its subclass.

12. Applications can extend from the default feeder (CL_FPMGB_ATTACHMENT) and define their own

feeder class to include application-specific functions.

13. Refer Configure List GUIBB in the FPM Cookbook for configuring application-specific List configuration.

Attachment RUIBB Features

The standard functions that are provided by FPM for the Attachment RUIBB are as follows:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 172

 Add attachment

 Add URL/link

 Download an attachment

 Edit title of attachment/link

 Delete an attachment/link

 Replace an attachment/link

 Grouping based on File Type, Created By, Changed By

Note the following information:

 CL_FPMGB_ATTACHMENT is the standard feeder class for the Attachment RUIBB. This is a List

feeder class which implements the IF_FPM_GUIBB_LIST interface.

 To set a unique Object ID (KPRO parameter ID), applications can raise the

IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attributes-fpm_set_attachment_detail event,

and set the ID in the FPM_DOCUMENT_ID parameter of the event.

 The attachments/links are stored in KPRO.

 Once the attachment/link is added, choose OK in the Add Attachment/Link dialog box. The

attachment is saved to the KPRO.

 If the application requires a change in the standard behavior or needs to add or remove features,

the application must configure a list component and specify an application-specific feeder class,

which extends from the standard feeder class (CL_FPMGB_ATTACHMENT).

 The interaction between the Attachment RUIBB and the dialog box views is carried out by the use of

events.

 The dialog box cannot be modified by the application. If the application needs to change the dialog

boxes, it can define its own dialog boxes and handle them through its feeder class (which inherits

the standard feeder class, CL_FPMGB_ATTACHMENT.

 By default, there are no authorization checks in the standard feeder. An application can implement

them by extending the default feeder class, CL_FPMGB_ATTACHMENT.

The standard Attachment RUIBB is shown in the screenshot below:

Note the following points:

 The File Type and the icons in the Name column are based on the mime type of the attachment.

 Edit Name, Delete Attachment/Link and Replace Attachment/Link are available as row actions.

 The Download option is available only for the attachment and not for the link.

 File Size is not applicable for a link.

 If the File Size is less than 1 KB, it is rounded off to 1 KB and displayed as such.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 173

User Actions at Runtime

You can perform the following actions at runtime on the Attachment RUIBB:

 Add an Attachment/Link

Choose Add Attachments to display the New Attachment or New Link dialog box. The dialog box

cannot be modified by the application. If the application needs to change the dialog box, they can

define their own dialog boxes and handle them through their feeder class (which inherits the

standard feeder, CL_FPMGB_ATTACHMENT).

Note that KPRO has a file size restriction of 2GB per file.

Choose OK to add the attachment or link to the KPRO. When the attachment or link is added to the

KPRO, the following attributes are stored as either PHIO (physical object) or LOIO (logical object)

properties:

Attribute Type of Property

Storage Category

PHIO

Language

PHIO

Description

PHIO

User-Specified Attribute (KPRO Attribute Name)

LOIO

Language

LOIO

Description

LOIO

Once the new attachment or link is added to the KPRO, it can be opened by choosing the link

present in the Name column.

 Edit Attachment/Link Name

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 174

You edit the attachment/link name through the row action, Edit. The new name is specified in the

Edit Name dialog box.

In the KPRO, the PHIO property description is modified according to the new name specified. The

LOIO property Description will still have the original name specified during the time of the

attachment/link creation.

 Delete Attachment/Link

You delete the attachment/link through the row action, Delete. In the confirmation dialog box,

choose OK to delete the attachment/link.

In the KPRO, both the LOIO class and the PHIO class are deleted.

 Replace Attachment/Link

You replace the attachment/link through the row action, Replace. The Replace Attachment or

Replace Link dialog box opens and you specify the new attachment/link name.

If the original file name and the replacement filename are different, a warning dialog box is

displayed and the user must confirm that the attachment/link is to be replaced.

In the KPRO, the LOIO remains the same and the PHIO is deleted. A new PHIO is created for the

replacement attachment/link.

 Download

The Download option is applicable for attachments only. Choose Download and the user has the

option to open or save the attachment.

 Group By

Group By has the following options to group attachments:

o File Type

o Created By

o Changed By

o None (No Grouping)

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 175

 Sorting and Filtering

Sorting and filtering is available on all columns except the Actions column.

Events

The following table details events that are triggered during runtime:

Event Name Constant Description

FPM_SET_DOCUMENT_DETAIL IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_set_attachment_detail (The Parameter ID must

be set in FPM_DOCUMENT_ID as an event parameter)

Event used for

setting the unique

object ID

dynamically

ADD_ATTACHMENT IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_add_attachment

Event triggered on

click of New

Attachment button

OPEN_ATTACHMENT_POPUP IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_open_attachment

Event triggered for

opening a New

Attachment dialog

box

FPM_NEW_ATTACHMENT IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_new_attachment

Event triggered for

adding new

attachment

ADD_LINK IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_add_link

Event triggered on

click of New Link

button

OPEN_LINK_POPUP IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_open_link

Event triggered for

opening a New Link

dialog box

FPM_NEW_LINK IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_new_link

Event triggered for

adding new link

ROW_ACTION_EDIT_TITLE IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_row_edit_title

Event triggered on

click of row action

Edit

CHANGE_TITLE_POPUP IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_open_edit_title

Event triggered for

opening Change

Title dialog box

FPM_NEW_TITLE IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_new_title

Event triggered for

editing the title

ROW_ACTION_REPLACE IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_row_replace

Event triggered on

click of row action

Replace

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 176

REPLACE_ATTACHMENT IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_replace_event

Event triggered for

opening replace

attachment/link

dialog box

FPM_REPLACE_ATTACHMENT IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_replace_attachment

Event triggered for

replacing the

attachment/Link

REPLACE_CHECK_POPUP IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_replace_check

Event triggered for

opening

replacement

confirmation dialog

box

FPM_CONFIRM_REPLACE IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_confirm_replace

Event triggered for

confirming the

replacement of

attachment/Link

with a different file

ROW_ACTION_DELETE IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_row_delete

Event triggered on

click of row action

Delete

DOWNLOAD IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_attachment_download

Event triggered on

click of Download

GROUP IF_FPM_RUIBB_constants=>gc_ruibb_attachment_attri

butes-fpm_attachment_group

Event triggered on

click of Group By

Notes RUIBB

RUIBB Interface

FPM provides a marker interface, IF_FPM_RUIBB, which must be implemented by the WD components.

This interface can also be used by other applications, to turn a UIBB into a RUIBB.

For the Notes RUIBB, the IF_FPM_RUIBB interface is implemented by the notes 'wrapper' component

FPM_NOTES_WRAPPER.

KPRO Configuration for Notes RUIBB

KPRO provides the functionality to store the Notes Contents. This is the basic KPRO configuration required

for Notes RUIBB. It does not cover all aspects of KPRO.

5. Create a Content Table

In transaction SE11, you can copy a row from table SDOKCONT1, for example FPM_T_NOTES.

6. Create a Content Repository

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 177

Open transaction OAC0, create a new content repository and specify the following details (note that

the table below shows only sample details):

Field Value

Content Rep. FPM_NOTES

Description FPM Notes

Storage Type SAP System Database

Rep. Sub-Type Normal

Version No. 0046

Contents Table FPM_T_NOTES

7. Create a Category

In transaction OACT, enter the category name and the content repository you created in the
previous step.

8. KPRO Modeling

(II) Create a Document Area

In transaction DMWB, choose Create to display the Create Entity dialog box. Select the
Document Area radio button and specify the Document area and Description. Save and

activate the Document area

(III) Create a PHIO Class

 In the Document Modeling Workbench hierarchy , expand the folder for the document

area you have just created. In the context menu for PHIO classes , select the Create
option.

 Select Real PHIO Class and enter the PHIO class and description.

Creating a PHIO Class

 In the Document Modeling Workbench hierarchy , double-click the newly created PHIO

class and, on the Standard Attributes tab page, specify the following attributes:

Attribute Value
Auto_Index X

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 178

Storage_category Specify the category you created in the previous step and

mark it as Exposed

PHIO PROPERTIES

 Choose the Tabulation button.

 Choose the Copy Table Set button.
 Specify the Name Prefix for Copy Tables and execute. Choose OK for all the information

dialog boxes that appear.
 In the Document Modeling Workbench hierarchy , double-click on the PHIO class. On

the Instance Attribs tab page, choose the Standard button and select all the attributes
and choose OK.

Instance Attributes for the PHIO

 Save and activate.

(III) Create IO Attribute

 In your document area inside the Document Modeling Workbench hierarchy, choose
Create in the context menu for the IO Attributes folder.

 Enter the IO Attribute and Description and choose OK.
 Double-click on the newly created IO attribute and enter the attribute values for

Field_Name and Table_Name (see screenshot below).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 179

IO Attributes

 Save and activate.

(VI) Create LOIO Class

 Repeat the steps to create a PHIO class as previously described.

 On the Instance Attribs tab page, after adding the standard attributes, choose the Insert
Row icon and add the IO attribute which you created in Step III.

 Save and activate.

(VII) Create a Connection Space

 In the Document Modeling Workbench hierarchy, right-click the Connection Spaces
folder and choose Create. Enter a Class Connection Space and Description.

 Double-click the newly-created connection space, and add the following:

- Select Insert Class and add PHIO class as Source class.

- Select Insert Class and add LOGOBJECT as relationship class.
- Select Insert Class and add LOIO class as Target class.

CONNECTION SPACE

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 180

Adding the Notes RUIBB in FLUID

The Notes RUIBB can be added to a Floorplan Manager application at any time. Depending on the floorplan

and the application-specific views already embedded, you can position a notes RUIBB component in one of

the following ways:

 in a subview of an object instance

 in a main step of a guided activity

 in a substep of a guided activity

 in a content area of an OVP

 in a tabbed component in a master UIBB

 in a tabbed component in a tab UIBB

 in a composite UIBB

Prerequisites

If the Notes RUIBB needs to be configured, KPRO configuration should be complete (Refer to KPRO

Configuration for Notes RUIBB).

Procedure

14. In the Preview panel, select the place where you want to add the Notes RUIBB.

15. If the notes RUIBB configuration already exists, search for it in the Repositories panel and drag and drop

it in the required position.

16. If a new UIBB needs to be added, choose Add UIBB in the floorplan schema tab.

17. Now specify the UIBB as a notes component by entering the following values in the Properties panel or

object instance schema:

 For Component, enter FPM_NOTES_WRAPPER.

 For View, enter NOTES_WINDOW.

18. Enter a configuration name.

CONFIGURING NOTES RUIBB

19. Choose Configure UIBB

20. Enter the following KPRO Parameters

1. KPRO PHIO class - Mandatory

2. KPRO LOIO class - Mandatory

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 181

3. KPRO Parameter Name - Mandatory

4. (Configured as IO attribute in KPRO DMWB)

5. KPRO Parameter ID - Optional (It can be provided here or during

 runtime via FPM_SET_DOCUMENT_DETAIL

 event).

21. Default List Configuration(for Notes RUIBB) - FPM_NOTES_LIST

Default List feeder class (for Notes RUIBB) - CL_FPMGB_NOTES

NOTES RUIBB CONFIGURATION

22. The default List configuration is FPM_NOTES_LIST. The standard functions provided by FPM are

configured in FPM_NOTES_LIST. If the applications wants to add or delete features, then the application

must specify its own list configuration.

23. If more than one notes uibb needs to be configured, enter the Instance ID in the List configuration.

24. If the application overrides the default list configuration(FPM_NOTES_LIST) with an application-specific

configuration, the feeder class can be CL_FPMGB_NOTES or its subclass.

25. Applications can extend from the default feeder (CL_FPMGB_NOTES) and define their own feeder class

to include application-specific functions.

26. Refer Configure List GUIBB in the FPM Cookbook for configuring application-specific List configuration.

Notes RUIBB Features

The standard functions that are provided by FPM for the Notes RUIBB are as follows:

 Add notes

 Display notes

 Edit notes

 Delete notes

Note the following information:

 CL_FPMGB_NOTES is the standard feeder class for the Notes RUIBB. This is a List feeder class which

implements the IF_FPM_GUIBB_LIST interface.

 To set a unique Object ID (KPRO parameter ID), applications can raise the

IF_FPM_RUIBB_constants=>gc_ruibb_notes_attributes-fpm_set_notes_detail event, and set the ID

in the FPM_DOCUMENT_ID parameter of the event.

 The Notes are stored in KPRO on triggering the FPM_SAVE event only. All the actions

(Add/Delete/Edit) in KPRO are triggered on FPM_SAVE event.

 Once the Notes name, type and content are entered in the Dialog, choose OK in the New Notes

dialog box. The note is temporarily stored and will be displayed in the UI.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 182

 If the application requires a change in the standard behavior or needs to add or remove features,

the application must configure a list component and specify an application-specific feeder class,

which extends from the standard feeder class (CL_FPMGB_NOTES).

 The interaction between the Notes RUIBB and the dialog box views is carried out by the use of

events.

 The dialog box cannot be modified by the application. If the application needs to change the dialog

boxes, it can define its own dialog boxes and handle them through its feeder class (which inherits

the standard feeder class, CL_FPMGB_NOTES.

 By default, there are no authorization checks in the standard feeder. An application can implement

them by extending the default feeder class, CL_FPMGB_NOTES.

The standard Notes RUIBB is shown in the screenshot below:

Note the following points:

 Edit Notes and Delete Notes are available as row actions.

User Actions at Runtime

You can perform the following actions at runtime on the Notes RUIBB:

 Add a Note

Choose New to display the New Notes dialog box. The dialog box cannot be modified by the

application. If the application needs to change the dialog box, they can define their own dialog

boxes and handle them through their feeder class (which inherits the standard feeder,

CL_FPMGB_NOTES).

Choose OK to add the note to the view. When the note is added to the KPRO on FPM_SAVE event, the

following attributes are stored as either PHIO (physical object) or LOIO (logical object) properties:

Attribute Type of Property

Storage Category PHIO

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 183

Language

PHIO

Description

PHIO

User-Specified Attribute (KPRO Attribute Name)

LOIO

Language

LOIO

Description

LOIO

Once the new note is added to the KPRO, it can be opened by choosing the link present in the Text

column.

 Edit Notes

You edit the note name/content/type through the row action, Edit.

On FPM_SAVE event, in KPRO, both the LOIO and PHIO class information are modified according to

the new note changes specified.

 Delete Notes

You delete the note through the row action, Delete.

On FPM_SAVE event, in KPRO, both the LOIO class and the PHIO class are deleted.

 Display Notes

You can click the note text link to display the note in a dialog Display Notes. The dialog box is

displayed using the OK button (which can also be used to close the dialog box).

 Sorting and Filtering

Sorting and filtering is available on all columns except the Actions column.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 184

Events

The following table details events that are triggered during runtime:

Event Name Constant Description

FPM_SET_DOCUMENT_DETAIL IF_FPM_RUIBB_constants=>gc_ruibb_notes_attributes-

fpm_set_notes_detail (The Parameter ID must be set in

FPM_DOCUMENT_ID as an event parameter)

Event used for

setting the unique

object ID

dynamically

ADD_NOTES IF_FPM_RUIBB_constants=>gc_ruibb_notes_attributes-

fpm_add_notes

Event triggered on

click of New button

OPEN_NOTES_POPUP IF_FPM_RUIBB_constants=>gc_ruibb_notes_attributes-

fpm_open_notes

Event triggered for

opening a New

Notes dialog box

FPM_NEW_NOTES IF_FPM_RUIBB_constants=>gc_ruibb_notes_attributes-

fpm_new_notes

Event triggered for

adding new notes

DISPLAY_NOTES IF_FPM_RUIBB_constants=>gc_ruibb_notes_attributes-

fpm_display_event

Event triggered for

displaying notes

FPM_EDIT_NOTES IF_FPM_RUIBB_constants=>gc_ruibb_notes_attributes-

fpm_edit _notes

Event triggered for

editing notes

ROW_ACTION_EDIT_TITLE IF_FPM_RUIBB_constants=>gc_ruibb_notes_attributes-

fpm_row_edit_title

Event triggered on

click of row action

Edit to show Edit

dialog box

ROW_ACTION_DELETE IF_FPM_RUIBB_constants=>gc_ruibb_notes_attributes-

fpm_row_delete

Event triggered on

click of row action

Delete

FPM_GUIBB_LIST_CELL_ACTION Event triggered on

click of cell action

to show the display

dialog box.

Value/Input Helps for Generic UIBBs (GUIBBs)

It is possible to assign value helps to fields belonging to GUIBB components.

You can use the following options to assign value helps (arranged in order of precedence):

1. DDIC value helps assigned in the field description

2. OVS (Object Value Selector) assigned in the field description

3. Freestyle value helps assigned in the field description

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 185

4. Fixed values assigned in the field description

5. DDIC value helps assigned to a DDIC structure used as includes in the field catalog

(nesting is possible).

6. DDIC value helps assigned to the data element used in the field catalog

7. Fixed values from the domain assigned in the data element used in the field catalog

8. Input help for data types DATS and TIMS.

If more than one of these options is assigned to a field, the one highest in the above list has priority.

Assignments in the Field Description

The assignments in the field description are described below:

DDIC Value Help

A DDIC value help can be assigned by the feeder class in the field description in field DDIC_SHLP_NAME.

OVS

Whenever a DDIC search help is not applicable, you should consider the OVS mechanism. OVS offers a
generic UI like the DDIC value help. However, you must offer the selection logic. To do this, you must

provide the name of a class implementing IF_FPM_GUIBB_OVS in the field description in field OVS_NAME. If

the specified name is the same as the feeder class name, then the feeder class instance will be used,
otherwise this class will be instantiated whenever it is needed.

This interface offers 4 methods:

 HANDLE_PHASE_0 where the OVS popup can be “configured”

 HANDLE_PHASE_1 to define the selection fields

 HANDLE_PHASE_2 where the result list must be determined

 HANDLE_PHASE_3 where the selected result list entry is passed back to the input field

In order to fulfill these tasks, an instance of IF_WD_OVS is passed as an importing parameter to these

methods.

Freestyle Value Help

A freestyle value help is a WD ABAP component implementing the WD interface IWD_VALUE_HELP. The

name of a freestyle value help component can be assigned by the feeder class in the field description in field

WD_VALUE_HELP. The attribute values can be accessed via the context element attached to the value help

listener. The context attribute names are the same as the field names of the field catalog except for the
search attributes of the Search UIBB. Additional information can be provided if the freestyle component also

implements the WD interface IF_FPM_GUIBB_VH. In method INITIALIZE_GUIBB_VH, the following

parameters are passed:

 IS_INSTANCE_KEY: The instance key of the GUIBB

 IV_FIELDNAME: The field name from the field catalog of the value help field

 IO_SEARCH_ATTR_READ: An access interface providing the current search criteria

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 186

Fixed Values

A set of fixed values can be assigned by the feeder class in the field description in field FIXED_VALUES.

Drag-and-Dropping Data between UIBBs

You can use the Drag-and-Drop feature to move (cut or copy) data at runtime within and between individual
user interface building blocks (UIBBs) and generic user interface building blocks (GUIBBs).

Drag-and-Drop allows you to carry out the following activities:

 Move data between a freestyle UIBB, List, and Hierarchical List

 Move data from a freestyle UIBB, List, or Hierarchical List to a Form

 Move nodes within a Hierarchical List

The Form GUIBB behaves differently from other GUIBBs. The Form GUIBB acts only as a drop target; that
is, you can drop data on to a Form GUIBB but it is not possible to drag (move) data from a Form GUIBB.

Enabling Drag-and-Drop

Drag-and-Drop can be enabled or disabled for individual UIBBs and GUIBBs separately in an application. It
is enabled in the following areas:

 In the feeder class method GET_DEFINITION of the corresponding GUIBB

 In the feeder class method GET_DATA of the corresponding GUIBB

 In the configuration editor of the corresponding GUIBB

If no Drag-and-Drop attributes are defined in the feeder class, attributes for Drag and Drop do not appear in
the configuration editor.

Configuration editor attributes take precedence over feeder class attributes.

The Drag-and-Drop feature has the following attributes:

 Tags
In a Drag-and-Drop operation, the user can only drop data onto a target if both the
source and target of the data have at least one common description (a tag). Multiple
tags are possible; assign a space between each tag.

 Scope

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 187

Scope forms part of the drag source (or drop target) data, indicating whether data
can be dragged (or dropped) from one UIBB or GUIBB to another UIBB or GUIBB
(Global) or only within the same UIBB or GUIBB (Local).

The drop event is triggered using the FPM event FPM_DROP_COMPLETED. It is also handled in UIBBs by

raising the FPM event FPM_DROP_COMPLETED.

Failure in a drop event is indicated by the parameter ET_MESSAGES in the GET_DATA method of the feeder

class.

Configuring Drag-and-Drop

Drag-and-Drop attributes can also be defined in the configuration editor of FPM, FLUID, of the corresponding
UIBB or GUIBB.

To configure Drag-and-Drop in the configuration editor, proceed as follows:

1. Ensure that Drag-and-Drop is defined in the corresponding feeder class of the
GUIBB.

2. To view the Drag-and-Drop attributes, choose the top node in the Hierarchy in the
configuration editor. For a Form GUIBB, the Drag-and-Drop attributes are found by
clicking the Group nodes. By default, tags and scope attributes defined in the feeder
class are displayed.

3. Select the checkbox Enable Drag or Enable Drop to enable the drag or drop
feature.

4. Enter new tags or or add further tags. You can also use wild card options by using *.

5. Enter Local or Global in the dropdown list using the field help.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 188

Events and Event Parameters

During a drop action, the event FPM_DROP_COMPLETED is raised with an event parameter. A structure

FPMGB_S_DRAG_AND_DROP is set as the event parameter in the event loop of the event

FPM_DROP_COMPLETED.

The structure is comprised of the following parameters:

 DRAG_SOURCE_DATA
A pointer representing the whole data set from where the drag is initiated.

 DRAG_SOURCE_INDICES
The row selected index from where the drag is occurred.

 DROP_POSITION
This is the index where the drop occurs. This is only applicable for LIST and
Hierarchical List GUIBBs.

 DRAG_UIBB_CONFIG_KEY
This is the key indicating the drag source UIBB details. The key includes GUIBB
component + View + Configuration Name. See example below:

FPM_LIST_UIBB V_LIST FPM_TEST_DRAG_LIST_UIBB00

Class, Methods and Parameters of Drag-and-Drop

The Drag-and-Drop feature uses the methods, parameters and classes described in the following tables:

GET_DEFINITION

Method of the feeder class. Allows the feeder class to provide all necessary information for configuring Drag-

and-Drop via the parameter et_dnd_definition.

ET_DND_DEFINITION

This attribute is of type structure

FPMGB_S_DND_DEFINITION which defines the drag

and drop attributes. The drag and drop has to be
defined separately using the attribute TYPE value
DRAG or DROP.

GET_DATA

Method of the feeder class. Allows the feeder class to provide all necessary information for overriding drag-
and-drop attributes via the parameter ct_dnd_definition

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 189

CT_DND_DEFINITION This attribute is of type structure

FPMGB_S_DND_DEFINITION which defines the drag

and drop attributes. The drag and drop has to be
defined separately using the attribute TYPE value
DRAG or DROP.

CL_FPM_GUIBB_DRAG_AND_DROP

A public class containing methods to raise the drop event and to set the Drag-and-Drop data. It contains the
following methods and parameters:

RAISE_DROP_EVENT

FPM GUIBBs use this method internally to raise the FPM_DROP_COMPLETED event during the drop action.

Note that applications can also use this method to raise the FPM_DROP_COMPLETED event during drop on

UIBBS. This can be called in on drop action method of the UIBB View.

IS_DROP_INFO This attribute sets the drop information of the GUIBB from

ON_DROP_ACTION method.

IO_COMP

This attribute sets the source UIBB configuration details (Config ID +
Config type + Config variant).

IV_COMP_NAME This attribute sets the source UIBB Component name.

SET_FPM_DROP_DATA

This method is called from the FLUSH method of the UIBB to set the drag and drop data.

IO_DATA

This attribute has a reference to the data from where the drag occurred.

IO_EVENT

This attribute sets the event FPM_DROP_COMPLETED to which the

dragged data has to be set.

IT_INDICES This attribute sets the selected (dragged) data.

IV_DROP_POSITION

(OPTIONAL)

This attribute sets the drop position in the drop target.

IV_CONFIG_KEY

(OPTIONAL)

This attribute sets the drag source config key to identify the source.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 190

Event Processing during Drag-and-Drop

The FPM_DROP_COMPLETED event is raised by the GUIBBs during a drop action. In the event loop, during a

FLUSH call, FPM compares the current (drop) GUIBB configuration name and the drag source configuration

name which is set as drag data. If they are the same, FPM will set the drag GUIBB feeder class CT_DATA

reference as the FPM event parameter DRAG_SOURCE_DATA which can be used again in the drop feeder

class. Similarly, selected lines will be set as FPM event parameter DRAG_SOURCE_INDICES which can be

used in the drop feeder class.

In the event loop, during a GET_DATA call in the drop feeder class, the application checks the EVENT_ID and

processes the drop action; it appends or replaces the data. This data is again mapped to the GUIBB via the

CT_DATA attribute. Similarly, during a GET_DATA call in the drag feeder class, the application checks the

EVENT_ID and removes the data from the drag source or table. The applications map the drop data as

required in the GET_DATA method.

Handling Drop in UIBBs

For UIBBs, the Drag-and-Drop attributes Tags and Scope can be set in the UI elements‟ properties tab by

creating the drag source information and drop target information. For more details about enabling drag and
drop for a UI element, see the SAP NetWeaver library.

However, you can use the FPM event FPM_DROP_COMPLETED to handle the drop action in UIBBs. During

the ON_DROP_ACTION method, raise this event with the required parameters using the method

RAISE_DROP_EVENT. You can also set the Drag-and-Drop information using SET_FPM_DROP_DATA method.

Dynamically Changing Drag-and-Drop

Drag-and-Drop attributes can be overridden at runtime if the Override at Runtime field is selected in the
configuration editor.

For GUIBBs, the drag-and-drop attributes can be changed at runtime in the GET_DATA method of the feeder

class using the parameter CT_DND_ATTRIBUTES; inform FPM using the parameter

EV_DND_ATTR_CHANGED. This parameter can be set on any events or conditions.

For Freestyle UIBBs, the drag-and-drop attributes can be changed at runtime as determined by Web Dynpro.

Context Based Adaptations (CBA)

The option to adapt applications without the need of modification is one of the main benefits offered by FPM.
The possibilities of Web Dynpro Customizing in combination with the Enhancement Framework already allow
far more than the classic Dynpro in this respect.

Nevertheless, these two options still have quite strong limitations: There is only one customizing per client
and Enhancements are system-wide active. This allows adapting applications to the need of a customer, but
not to the need of different contexts within one customer system.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 191

Use-Case Example

It is quite simple to adapt the screen below by customizing or enhancing. The customer can rearrange or
hide fields; he can also add additional fields. However, he must also decide how this screen should look like
for all situations. He cannot adapt it depending on some runtime parameter.

There could be the requirement to add additional information to (or remove it from) the screen for particular
users (in our example, it has been decided to remove the details assignment block and some other fields to
avoid unnecessary load on managers).

Previously, there was only one option to achieve this: copy the whole set of configurations, adapt it and have
the particular users start the adapted configurations.

There was also another problem, that is, the need for data-dependent adaptations. In the previous screen,
the Street/House Number fields are placed in the right order for German addresses. In France, house
number and street name are the other way around. Therefore, an adaptation for French addresses would
simply swap those two fields around. However, previously, this could only be realized in a very cumbersome
way: The form configuration must be replaced at runtime via AppCC-coding.

The new functionality allows a far better and more comfortable approach to implement these use-cases.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 192

Basic Concepts

Adaptation Schema

The adaptation schema is simply a list of characteristics (or 'dimensions') which can be used for adaptations.
In the previous example, there is the need for two characteristics: role and country. The adaptation schema

is created using SM30 views FPM_V_ADAPT_SCHM and FPM_V_ADAPT_DIM.

Adaptation Dimension

The adaptation dimension represents an individual characteristic within an adaptation schema. It is

maintained in view FPM_V_ADAPT_DIM. A dimension is defined by a name for identification, an index and a

data element. The index is used to determine the dominating adaptation dimension in case there is a
collision. The data element is only used for the design-time allowing to you to provide field and F4 help while
configuring context-based adaptations

Adaptation Context

The adaptation context is a set of values for a given adaptation schema. So, if the adaptation schema TEST
consists of the dimensions ROLE and COUNTRY, a sample adaptation context would be ROLE =
MANAGER and COUNTRY = FRANCE.

The term 'context' in this document is completely independent of the Web Dynpro term 'context'. To
avoid misunderstandings, the term 'adaptation context' is used.

Inheritance of Component Configurations

Context-based adaptations use the new inheritance concept of component configurations. Each adapted
configuration is represented by a derived configuration. A derived configuration contains only the delta to its
base configuration.

Step-By-Step Example

In the first part of this step-by-step example we will extend the existing WD demo application

S_EPM_FPM_PO by adding an Attachment UIBB to the overview page. This additional UIBB should only be

available for Managers. As this can be done without any modification of the existing application, there is no
need to create a copy first.

In the second part of this example we will exchange street and house number for the French address format.

Adding an Attachment UIBB for Managers

1. Create the Adaptation Schema

As we want to adapt the application with respect to role (only Managers should see
the attachment UIBB) and country (French addresses need a different field order),
we need to create an adaptation schema having the two dimensions, Role and
Country.

As this adaptation schema already exists (TEST_FPM), you can use this and skip the
following section.

a. Launch transaction SM30 and enter FPM_V_ADAPT_SCHM as Table/View.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 193

b. Choose Create for a new adaptation schema.

c. Edit FPM_V_ADAPT_DIM again with SM30 and create the two dimensions
needed (see screenshot below).

An adaptation schema should normally be valid throughout a whole application
area; there is no need to create an individual schema for every application.

2. Create the WD Application

In order to run S_EPM_FPM_PO as an adaptable configuration, a new WD application
must be created:

a. Open SE80 and create a new WD application (e.g. Z_CBA_EPM_FPM_PO). When
you create non-adaptable FPM applications you use one of the

FPM_<floorplan ID>_COMPONENT components for your application. For

adaptable applications, you use FPM_ADAPTABLE_<floorplan ID> instead.

b. Therefore, as S_EPM_FPM_PO is an application using the OVP floorplan, you
must create the new application using the following settings:

 Component FPM_ADAPTABLE_OVP
 Interface View FPM_WINDOW
 Plug Name DEFAULT

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 194

c. To be able to set the adaptation context of your application via URL
parameters or via application configuration, add the relevant adaptation
dimensions as application parameters (see following screenshot).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 195

3. Create the Application Configuration

As with non-adaptable applications, the next step is to create a configuration for the
new application.

a. On the Structure tab of the application configuration editor, you can see that
you have to enter two component configuration names (see screenshot):

b. In the first row, you can enter an arbitrary name as this configuration does
not yet exist. This configuration will be created shortly and will contain the
necessary data for CBA. In the second row, you enter the original
application‟s root component configuration (the configuration used for the

floorplan component FPM_OVP_COMPONENT)

4. Create the CBA configuration

Now create the configuration entered in the first row of the application configuration.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 196

a. There is only one attribute which has to be maintained within this

configuration, the Adaptation Schema, under the context node configData (See
screenshot below). Enter the name of your adaptation schema and save the
configuration.

Now all the preparation work is done. If you run the new application it should look
exactly like the original.

5. Create an Adaptation

a. Call up your new application configuration again and navigate from there to
the OVP component configuration. You should now see a new Adaptations
toggle-button in the main toolbar; choose it to switch on the adaptation panel.

b. One entry already exists in the Adaptations panel. This is the base
configuration which you now can adapt.

c. To create an adaptation for the Manager role, choose the Add Adaptation button
and enter MANAGER as the Role in the dialog box that appears (leave Country

empty). After entering package details, you will have another entry in the
adaptation list. Select it and switch to edit mode.

d. Now add a new UIBB to the page and save it (see example in the following
screenshot):

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 197

If you run the application now, it is still unchanged. This is because there is still no
adaptation context set. However, the application is now ready to show the additional
UIBB when the adaptation context is set to role = MANAGER.

This can now easily be achieved by adding the relevant adaptation context as a
URL parameter. In the URL of the application, add &ROLE=MANAGER, refresh the

screen; you should now see that the application has been adapted and the
attachment UIBB is displayed in the bottom of the overview page.

Before going on to the next part of this step-by-step example, let‟s have a quick summary:

We started with a delivered standard application and adapted it. We had to work through a couple of steps
but we did not have to enter additional code or modify existing objects; all the steps were purely
configurative.

Adapting the Address Layout

In the second part of this example, we will demonstrate some dynamical adjustments of the screen layout
based on the data to be displayed. As the chosen application is not yet prepared to support CBA, this second
part will require a little bit of coding. As we are using the same application we can skip the steps 1-4 from the
previous part and directly continue with preparing the application to support CBA.

1. Extending the Form’s Feeder Class

The data in the original application‟s form is provided by the feeder class

CL_EPM_PO_FORM_FEEDER. In order to make the form adaptable (with regard to
country), the feeder class must communicate the country of the data to the CBA
framework.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 198

The original feeder class does not do this because it was created before CBA was
available: since CBA is new, this applies to all feeder classes at the moment.
Therefore, this is quite a common use-case.

To provide the CBA functionality without modifying the standard feeder class, we
need a new feeder class. As we do not want to re-implement all its functionality, we
sub-class it and only redefine the one method which needs to be adapted.

Therefore, open transaction SE24 and create a new class which inherits from

CL_EPM_PO_FORM_FEEDER. The only method we redefine is the IF_FPM_GUIBB_FORM~GET_DATA

method and we implement it using the following code:

method IF_FPM_GUIBB_FORM~GET_DATA.

* call the GET_DATA method of the standard feeder class

 CALL METHOD SUPER->IF_FPM_GUIBB_FORM~GET_DATA

 EXPORTING

 IO_EVENT = io_event

 IT_SELECTED_FIELDS = IT_SELECTED_FIELDS

 IV_RAISED_BY_OWN_UI = IV_RAISED_BY_OWN_UI

 IV_EDIT_MODE = IV_EDIT_MODE

 IMPORTING

 ET_MESSAGES = ET_MESSAGES

 EV_DATA_CHANGED = EV_DATA_CHANGED

 EV_FIELD_USAGE_CHANGED = EV_FIELD_USAGE_CHANGED

 EV_ACTION_USAGE_CHANGED = EV_ACTION_USAGE_CHANGED

 CHANGING

 CS_DATA = CS_DATA

 CT_FIELD_USAGE = CT_FIELD_USAGE

 CT_ACTION_USAGE = CT_ACTION_USAGE.

* Check event id to avoid infinite loop

 check io_event->MV_EVENT_ID ne

 IF_FPM_CONSTANTS=>GC_EVENT-ADAPT_CONTEXT.

 data: lo_fpm type ref to if_fpm,

 lo_event type ref to CL_FPM_EVENT.

 field-symbols: <fs_country_code> type SNWD_COUNTRY.

* determine the country code from the data delivered by the standard feede

r

 ASSIGN COMPONENT 'COUNTRY_CODE' of STRUCTURE cs_data

 to <FS_COUNTRY_CODE>.

* create the object to set the adaptation context. .

 CREATE OBJECT LO_EVENT

 EXPORTING

 IV_EVENT_ID = IF_FPM_CONSTANTS=>GC_EVENT-ADAPT_CONTEXT

 IV_ADAPTS_CONTEXT = abap_true.

* Set the adaptation context via event parameters

 lo_event->MO_EVENT_DATA->SET_VALUE(

 exporting iv_key = 'COUNTRY'

 iv_value = <FS_COUNTRY_CODE>).

* finally raise the event

 lo_fpm = CL_FPM_FACTORY=>GET_INSTANCE().

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 199

 lo_fpm->RAISE_EVENT(lo_event).

endmethod.

Let‟s now walk through the code step-by-step:

a. First we call the IF_FPM_GUIBB_FORM~GET_DATA of the parent class, making

sure that the standard logic and data retrieval is executed, so the logic of the

feeder class remains unchanged. All we are doing here is adding a few

additional lines of code to inform the CBA framework about the changed

adaptation context.

b. We then check that the current event is not an adaptation event. This is

because setting the adaptation context is done by raising another FPM

event, which then calls this method again. Omitting this check would cause

an infinite loop.

c. Next we determine the country from the data provided by the standard

implementation.

d. Finally we create an event to change the adaptation context, adding the

country information as an event parameter and raising the event.

Note that this code is far from optimal; it is kept as simple as possible for example purposes and to
demonstrate how CBA works. A better version will be provided in a later chapter.

2. Replacing the Standard Feeder Class

Now we will use a trick to replace the standard feeder class with our newly created
one. To do this, create an adaptation of the original form configuration. Call up your
new application configuration again. From there, navigate via the OVP component
configuration to the Form UIBB configuration. Create a new adaptation for it. As

adaptation context set ROLE = * and leave the Country value empty. Then replace
the feeder class within the adapted configuration.

ROLE = * means this adaptation should be applied to all adaptation contexts, where
no more specific adaptation exists. Since, at the moment, this is the only adaptation
of the form, this adaptation will always be applied. Therefore, this is a simple trick to
replace a feeder class without modifying any standard object.

These two steps are much easier if you want to prepare your own application for
CBA. In that case, you would simply add the necessary lines of code to the
standard feeder class application and that‟s it; there is no need to create your own
feeder class and to replace the feeder class via an adaptation.

Applications which want to provide the adaptation functionality should add the
necessary code to their standard code. This way, customers are enabled using CBA
completely without these two more complex steps.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 200

3. Creating an Adaptation for French Addresses

The last step is to create an adaptation of the form for the context COUNTRY = FR.
So, we again navigate to the form‟s configuration via the application and the OVP
component configuration. Create a new adaptation and set the adaptation context to

ROLE = * and COUNTRY = FR.

Replace the feeder class and add your own, and swap the street and house number
fields (see following screenshot):

Run the application. If you select a French supplier you should now see the
adjusted configuration.

Now run your application again, but this time add ROLE=MANAGER to the URL. The
result is probably no surprise: the additional attachment UIBB is displayed because
you started the application as a manager, and for French addresses you get the
right order for street and house number.

4. Enhancing the French Address Adaptation

As mentioned already, there is some room for improvement in this example. There
are two issues with the current solution:

a. The feeder class is currently firing an additional event to set the adaptation

context at every FPM event. This means that the number of FPM roundtrips

is doubled. Worse still, is if you assume that it should be possible to run the

feeder class in an application which does not support CBA, then even in

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 201

these applications the number of FPM events is doubled. As this might lead

to performance implications, this should be avoided.

b. The adaptation context is set globally. This means it will be applied to all

UIBBs on the screen. This is normally OK. However, there might be

situations where another UIBB on the screen uses another adaptation

context.

This is discussed further in the following two sections.

Avoiding Unnecessary FPM Events

This can of course be solved very easily. To avoid that this CBA-specific code is executed in applications

which doesn‟t support CBA, you can simply check if IF_FPM->MO_ADAPTATION_MANAGER is bound. Add

the following line of code directly after the call of the parent‟s GET_DATA method:

check CL_FPM_FACTORY=>GET_INSTANCE()->MO_ADAPTATION_MANAGER is bound.

The next thing to do is to limit the additional FPM events, needed for setting the adaptation context, to those
situations where the relevant context has indeed changed. This is trivial: simply store the country value at
every event and, in the next event, check if it has changed. Only trigger the adaptation event if there is a

change. Add a private attribute MV_COUNTRY_CODE (type SNWD_COUNTRY) to your class and add the

following lines of code before you create the event:

check MV_COUNTRY_CODE ne <FS_COUNTRY_CODE>.

 MV_COUNTRY_CODE = <FS_COUNTRY_CODE>.

Setting the Adaptation Context Locally

To set the adaptation context for a single UIBB only, it is possible to set it locally. This can be achieved by
adding the UIBB instance key to the event and using an appropriate event.

Let‟s start with using an appropriate event. There are two options:

Either use if_fpm_constants=>gc_event-ADAPT_CONTEXT_LOCAL as the event ID or use any other

event (except if_fpm_constants=>gc_event-ADAPT_CONTEXT) and set its ADAPTS_CONTEXT attribute

to TRUE. If you then provide the UIBB‟s configuration key as an event parameter,

if_fpm_constants=>gc_event_param-source_config_id, it is automatically treated as a local

event.

But, in any case, for a local adaptation change we need the UIBB instance key. A simple solution would be to
hardcode this. However, this would then only work for the specified configuration and when the feeder class
is reused in a different application, this would not work. Therefore, we should try to determine the instance
key at runtime.

This information is passed to the feeder class in the IF_FPM_GUIBB~INITIALIZE method. So again the

solution is obvious: Redefine this method, store the UIBB instance information and then use it when firing the
event.

Add another private attribute to your feeder: MS_INSTANCE_KEY type FPM_S_CONFIG_KEY.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 202

Redefine method IF_FPM_GUIBB~INITIALIZE and add the following code:

method IF_FPM_GUIBB~INITIALIZE.

 CALL METHOD SUPER->IF_FPM_GUIBB~INITIALIZE

 EXPORTING

 IT_PARAMETER = it_parameter

 IO_APP_PARAMETER = io_app_parameter

 IV_COMPONENT_NAME = iv_component_name

 IS_CONFIG_KEY = is_config_key

 IV_INSTANCE_ID = iv_instance_id.

 move-CORRESPONDING IS_CONFIG_KEY to MS_INSTANCE_KEY.

 MS_INSTANCE_KEY-INSTANCE_ID = IV_INSTANCE_ID.

endmethod.

Trigger the local adaptation event. To do this, enhance the coding of your GET_DATA method by firing the

if_fpm_constants=>gc_event-ADAPT_CONTEXT_LOCAL event instead of the

if_fpm_constants=>gc_event-ADAPT_CONTEXT event and add the instance key parameters to the

event. In the end, the whole GET_DATA method should look like this:

method IF_FPM_GUIBB_FORM~GET_DATA.

* call the GET_DATA method of the standard feeder class

 CALL METHOD SUPER->IF_FPM_GUIBB_FORM~GET_DATA

 EXPORTING

 IO_EVENT = io_event

 IT_SELECTED_FIELDS = IT_SELECTED_FIELDS

 IV_RAISED_BY_OWN_UI = IV_RAISED_BY_OWN_UI

 IV_EDIT_MODE = IV_EDIT_MODE

 IMPORTING

 ET_MESSAGES = ET_MESSAGES

 EV_DATA_CHANGED = EV_DATA_CHANGED

 EV_FIELD_USAGE_CHANGED = EV_FIELD_USAGE_CHANGED

 EV_ACTION_USAGE_CHANGED = EV_ACTION_USAGE_CHANGED

 CHANGING

 CS_DATA = CS_DATA

 CT_FIELD_USAGE = CT_FIELD_USAGE

 CT_ACTION_USAGE = CT_ACTION_USAGE.

* Only do the CBA processing in case it's active

 check CL_FPM_FACTORY=>GET_INSTANCE()->MO_ADAPTATION_MANAGER is bound.

* Check event id to avoid infinite loop

 check io_event->MV_EVENT_ID ne

 IF_FPM_CONSTANTS=>GC_EVENT-ADAPT_CONTEXT_LOCAL.

 data: lo_fpm type ref to if_fpm,

 lo_event type ref to CL_FPM_EVENT.

 field-symbols: <fs_country_code> type SNWD_COUNTRY.

* determine the country code from the data delivered by the standard feeder

 ASSIGN COMPONENT 'COUNTRY_CODE' of STRUCTURE cs_data

 to <FS_COUNTRY_CODE>.

* Check that adaptation context needs to be adjusted.

 check MV_COUNTRY_CODE ne <FS_COUNTRY_CODE>.

 MV_COUNTRY_CODE = <FS_COUNTRY_CODE>.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 203

* create the object to set the adaptation context. The adaptation context

* is only set locally for the form.

 CREATE OBJECT LO_EVENT

 EXPORTING

 IV_EVENT_ID = IF_FPM_CONSTANTS=>GC_EVENT-ADAPT_CONTEXT_LOCAL

 IV_ADAPTS_CONTEXT = abap_true.

* Set the adaptation context via event parameters

 lo_event->MO_EVENT_DATA->SET_VALUE(

 exporting iv_key = 'COUNTRY'

 iv_value = <FS_COUNTRY_CODE>).

* Add the information, for which UIBB the adaptation context is set

 lo_event->MO_EVENT_DATA->SET_VALUE(

 exporting iv_key = if_fpm_constants=>gc_event_param-source_config_id

 iv_value = MS_INSTANCE_KEY-CONFIG_ID).

 lo_event->MO_EVENT_DATA->SET_VALUE(

 exporting iv_key = if_fpm_constants=>gc_event_param-source_config_type

 iv_value = MS_INSTANCE_KEY-CONFIG_TYPE).

 lo_event->MO_EVENT_DATA->SET_VALUE(

 exporting iv_key = if_fpm_constants=>gc_event_param-source_config_var

 iv_value = MS_INSTANCE_KEY-CONFIG_VAR).

 lo_event->MO_EVENT_DATA->SET_VALUE(

 exporting iv_key = if_fpm_constants=>gc_event_param-SOURCE_INSTANCE_ID

 iv_value = MS_INSTANCE_KEY-INSTANCE_ID).

* finally raise the event

 lo_fpm = CL_FPM_FACTORY=>GET_INSTANCE().

 lo_fpm->RAISE_EVENT(lo_event).

endmethod.

If you now run the application, it will still behave as before but now the adaptation context is only applied
locally to the Form UIBB.

Hiding of UIBBs

In this section, we want to prove that the adaptation context is really only applied locally. This gives us the
opportunity to demonstrate another feature that CBA offers: dynamically hiding UIBBs based on the
adaptation context.

1. Let‟s create an adaptation for the List UIBB underneath the form using the same
adaptation context and see that it not applied. Navigate again via the application

configuration to the List UIBB‟s configuration and create an adaptation for ROLE = *

COUNTRY = FR. In the dialog box where you enter the adaptation context, flag the
check box Only Hide UIBBs. After closing the dialog box, you are already done. In
flagging this checkbox you have stated that this UIBB shall be hidden if the
adaptation context fits.

2. Run the application again. It should be unchanged, that is, the List UIBB should still

be there. Now let‟s try it the other way round. Go to your GET_DATA method again

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 204

and change the code, so that the global adaptation event is thrown (simply delete

the _LOCAL in the event id constant):

…

CREATE OBJECT LO_EVENT

 EXPORTING

 IV_EVENT_ID = IF_FPM_CONSTANTS=>GC_EVENT-

ADAPT_CONTEXT_LOCAL

 IV_ADAPTS_CONTEXT = abap_true.

…

3. When you execute the application now, the List UIBB should be removed.
(Alternatively, you can set a break-point in the first statement after the

CREATE OBJECT LO_EVENT statement. Run the application again, select a French

supplier and when the break-point is reached, change the value of LO_EVENT-

>MV_EVENT_ID from FPM_ADAPT_CONTEXT_LOCAL to FPM_ADAPT_CONTEXT. This way, we
are changing the event from local to global. Then let the program continue).

Although this is probably a very useful feature, it was only introduced as a work-around for a limitation of
CBA.

Limitation:

Dynamic changes of the adaptation context at runtime will only affect adaptations of UIBB configurations.
The floorplan configurations are loaded at startup of the application and there is no way to replace it later on.
Therefore, it is not possible to change the UIBB assembly of a page at runtime via CBA. The only option is
the hiding of UIBBs.

The natural approach to remove the List GUIBB in the French adaptation context would be to create an

adaptation for the floorplan component (as in the first part of this tutorial) for the adaptation context ROLE =

*, COUNTRY = FR and remove the List UIBB in this adaptation. But this will not work! The list UIBB will

remain on the screen!

Navigation with Launchpads

To navigate to a specific application outside of your FPM application (for example, to another URL or Web
Dynpro application, transaction, or report), you use the following FPM toolbar menus:

 You Can Also

 Related Links

These FPM toolbar menus utilize launchpads.

The launchpad is displayed as a dropdown list. Descriptions that you have written for launchpad applications
cannot be displayed in Floorplan Manager.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 205

As opposed to the conventional use of launchpads in portals, in Floorplan Manager only those navigation
destinations that were created as applications in the first visible folder after the top node of the launchpad are
shown. The applications in the other folders of the launchpad are hidden in the display.

Navigation APIs

The FPM also provides you with the following two navigation interfaces, allowing you to control the
launchpads:

 IF_FPM_NAVIGATION: Use this to navigate to an application using a given
launchpad.

 IF_FPM_NAVIGATE_TO: Use this to navigate to an application without using a
launchpad.

Suspend and Resume

The Suspend and Resume feature is available for FPM applications. This can be described briefly as a
feature in which the Web Dynpro application, built within the FPM framework, can be placed in a suspended
state whilst the user navigates to another URL. The user can work on the URL and then navigate back to the
suspended FPM application, which is resumed from exactly the same state before navigation occurred.

The Suspend and Resume feature is also available with Web Dynpro ABAP and Web Dynpro Java
application categories.

Note that the usage of a report launchpad is mandatory to enable suspend and resume for FPM applications.

For a detailed explanation of this feature, see Suspend and Resume.

Including a Launchpad in the User Interface

Procedure

To assign a launchpad to the YouCanAlso or RelatedLink elements on the user interface, complete the

following steps.

1. Select an FPM-based application configuration in the Object Navigator of the ABAP
Workbench.

2. On the Web Dynpro Explorer: Display Web Dynpro Configuration screen, choose Web
Dynpro Configuration Test Execute in Administrator Mode .
The application is launched in a separate browser window.

3. In this window, go to the application's identification region and choose the Customize

Page link.
4. On the Editor for Web Dynpro ABAP Components screen, choose Continue in Change Mode

The FPM configuration editor, FLUID, opens in edit mode.
5. Choose the Toolbar Schema panel and choose New Toolbar Element.

6. Choose either the You Can Also or Related Links element.
The element now appears in the table of elements in the application.

7. Turn on the Attributes panel.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 206

8. In the panel‟s table, choose the element you have just added to display its attributes

in the Attributes panel.
9. In the Role field, enter the name of the launchpad role.
10. In the Instance field, enter the name of the launchpad instance.
11. To change the name of the button element, enter a different name in the Name field.
12. Save the configuration.
13. Test the new configuration.

General Settings of Launchpads

On the Change Launchpad Role screen, choose Extras, General Settings to display settings which are valid
for the whole launchpad and its applications. In the dialog box, you can set the Check Application Alias is
Unique flag to check that a destination application alias being used by an FPM application is unique.
Application aliases are not necessarily unique.

Transporting a Launchpad

To transport a launchpad, proceed as follows:

1. Choose transaction LPD_CUST.

2. Open the launchpad you want to transport in change mode.

3. Choose Launchpad Transport .
4. In the dialog box, enter the package to which you want to assign the texts that you created in the

launchpad. As a result, the texts are also forwarded to translation. Choose Continue.
5. In the dialog box, enter a Customizing request and choose Continue. This request includes the

relevant table entries for the following tables:

 APB_LAUNCHPADT

 APB_LAUNCHPAD_V

 APB_LPD_CONTROL

 APB_LPD_OTR_KEYS

 APB_LPD_VERSIONS
6. In the dialog box, enter a Workbench request. This request includes the texts from the launchpad.

These are objects of the type R3TR DOCT.

7. Release both requests.

IF_FPM_NAVIGATION API

(Runtime class CL_FPM_NAVIGATION)

This navigation interface provides you with a list, MT_TARGETS, with all customized applications of a given

launchpad.

To access this navigation API, use the interface IF_FPM. This provides the GET_NAVIGATION method,

which returns an instance of the navigation API, IF_FPM_NAVIGATION.

Tables, Attributes and Domains

Table: MT_TARGETS

Pa T Type Description

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 207

ra
m
et
er
s

y
p
e
K
i
n
d

en

tr

y_

ty

pe

T
y
p
e

FPM_NA

VIGATI

ON_TAR

GET_TY

PE

Entry_type Type FPM_NAVIGATION_TARGET_TYPE Type of application.

pa

re

nt

T
y
p
e

STRING GUID of the parent folder or initial.

ke

y

T
y
p
e

STRING GUID of application.

al

ia

s

T
y
p
e

STRING A (unique) identifier for an application. It is defined in the Customizing of the launchpad.

te

xt

T
y
p
e

TEXT25
5

Text of the link.

de

sc

ri

pt

io

n

T
y
p
e

STRING Description.

ic

on

_p

at

h

T
y
p
e

STRING Path to an icon.

en

ab

le

T
y
p
e

BOOLE_
D

Determines if an application is active/enabled or inactive/disabled.

vi

si

bl

e

T
y
p
e

BOOLE_
D

Determines the visibility of an application

Attributes:

ID Description

MD_OPENING_

LAUNCHPAD_F

True indicates that the launchpad could not be opened successfully

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 208

AILED

Domain: FPM_NAVIGATION_TARGET_TYPE

ID Description

APP Line contains an application.

FOL Line contains a folder.

SEP Line contains a separator.

Methods

This navigation interface provides the methods described in the tables below:

NAVIGATE:

Starts the navigation of an application.

Parameters Direction Type
kind

Type Description

IV_TARGET_KEY importing Type STRING GUID of Application.

MODIFY:

Changes attributes of an application. For example, you can change the visibility of an application, enable or
disable an application and change its description and text.

Parameters Direction Type
kind

Type Description

IV_VISIBLE importing Type BOOLE_D Set an application to visible/invisible.

IV_ENABLE importing Type BOOLE_D Enable/disable an application.

IV_TEXT importing Type STRING An alternative text for the application.

IV_DESCRIPTION importing Type STRING An alternative description for the
application.

IV_TARGET_KEY importing Type STRING GUID of Application.

IV_NOTIFY importing Type BOOLE_D Invokes notification on all registered
nodes / objects.

SET_FILTER:

Allows you to display the content of another folder.

Parameters Direction Type
kind

Type Description

IT_Filter importing Type T_FILTER GUIDs of folder which
content should be
displayed.

MODIFY_PARAMETERS:

Changes the values of existing parameters or adds a parameter if none exists. (Modifies Application,

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 209

Business and Additional Information parameters).

Parameters Direction Type
kind

Type Description

ID_TARGET_KEY importing Type STRING GUID of Application.

IT_APPLICATION_PARAMETER importing Type APB_LPD_T_PARAMS Contains application
parameters that will be
added or changed.

IT_BUSINESS_PARAMETER importing Type APB_LPD_T_PARAMS Contains business
parameters that will be
added or changed.

IT_ADD_INFO_PARAMETER importing Type APB_LPD_T_PARAMS Additional information
which should be
modified.

SUPPRESS_REBUILD_OF_MT_TARGETS:

The rebuilding of table MT_TARGETS can be switched on or off (for mass changes).

Parameters Direction Type
kind

Type Description

IV_SUPPRESS_REBUILD importing Type ABAP_BOOL Flag to switch the
rebuild on or off.

ADD_BEX_ANALYZER:

Adds an application of type BEx Analyzer to a given launchpad.

Parameters Direction Type
kind

Type Description

IV_PARENT_FOLDER_

ID

importing Type FPM_APPL
ICATION_I
D

GUID of parent folder. If the parameter
is empty, the application will be added
at top level.

IS_BEX_ANALYZER_F

IELDS

importing Type FPM_S_BE
X_ANALYZ
ER

Structure that contains the fields to add
with BEx Analyzer application type.

EV_APPLICATION_ID exporting Type FPM_APPL
ICATION_I
D

GUID of Application.

ET_MESSAGES exporting Type FPM_T_T1
00_MESSA
GES

Error messages.

EV_ERROR exporting Type BOOLE_D Status = false - the application was
added; Status = true - an error
occurred.

The following are other methods with a similar interface to ADD_BEX_ANALYZER, which allow you to add a

specified application, at runtime, to a launchpad:

 ADD_URL

 ADD_TRANSACTION

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 210

 ADD_REPORT_WRITER

 ADD_OBN

 ADD_INFOSET_QUERY

 ADD_FOLDER

 ADD_BI_ENTERPRISE_REPORT

 ADD_BI_QUERY

 ADD_BI_TEMPLATE

 ADD_KM_DOCUMENT

 ADD_PORTAL_PAGE

 ADD_VISUAL_COMPOSER

 ADD_WEBDYNPRO_ABAP
 ADD_WEBDYNPRO_JAVA

 ADD_CRYSTAL_REPORT

 ADD_XCELSIUS_DASHBOARD

REMOVE:

Removes an application from a launchpad.

Parameters Direction Type kind Type Description

ID_APPLICATION_ID importing Type STRING GUID of Application.

Integration: Navigation in the Event Loop

If you call the IF_FPM_NAVIGATION method NAVIGATE, a new event object of type

cl_fpm_navigation_event is created. This event object contains all the application parameters. The

interface IF_FPM_UI_BUILDING_BLOCK contains the PROCESS_EVENT method, which allows you to call

the navigation event and change these parameters.

To do this, implement the following code in the PROCESS_EVENT method:

"First check if the event is a navigation event"

check io_event->MV_EVENT_ID = io_event->gc_event_navigate.

"Make a cast from the event object to the cl_fpm_navigation_event object"

DATA lr_event type ref to cl_fpm_navigation_event.

lr_event ?= io_event.

"Get the business parameter"

lr_bus_parameter ?= lr_event->mo_event_data.

"Get the launcher parameter"

lr_launcher_parameter ?= lr_event->mo_launcher_data.

Note the use of the following lr_parameter methods:

 to_lpparam
Provides you with an internal table with the parameters

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 211

 get_value, set_value or delete_value
Allows you to change a parameter

If the event processing requires further user interaction (for example, requesting further data via a dialog

box), the event processing can be deferred by returning EV_RETURN =

IF_FPM_CONSTANTS~GC_EVENT_RESULT-DEFER.

If the result of the event processing is ok, you can return EV_RETURN =
IF_FPM_CONSTANTS~GC_EVENT_RESULT-OK; if the result of the event processing is not ok, you can
return EV_RETURN = IF_FPM_CONSTANTS~GC_EVENT_RESULT-FAILED

To prevent a loss of data, you can implement the NEEDS_CONFIRMATION method. This method is located in

the interface IF_FPM_UI_BUILDING_BLOCK. This method contains the navigation event and you can

decide whether to raise a data-loss dialog box. To do this, you must return the following value:

eo_confirmation_request = cl_fpm_confirmation_request=>go_data_loss.

IF_FPM_NAVIGATE_TO API

This interface provides you with a set of methods to launch an application without using a launchpad.

To access this Navigation API, use the interface IF_FPM. This provides the method GET_NAVIGATE_TO()

which returns an instance of the Navigation API IF_FPM_NAVIGATE_TO.

This interface contains the methods described in the table below and the following list.

Methods of IF_FPM_NAVIGATE TO API

LAUNCH_BEX_ANALYZER:

Launches an application of type BEx Analyzer.

Parameters: Direction Type
kind

Type Description

IS_BEX_ANALYZER_F

IELDS

importing Type FPM_S_BEX_ANAL

YZER

Structure that contains the fields
to add with BEx Analyzer
application type.

ET_MESSAGES exporting Type FPM_T_T100_MES

SAGES

Error messages

EV_ERROR exporting Type BOOLE_D Status: false - the application was
added; true - an error occurred

The following are other methods with a similar interface to LAUNCH_BEX_ANALYZER, which allow you to

launch a specified application:

 LAUNCH_URL

 LAUNCH_TRANSACTION

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 212

 LAUNCH_REPORT_WRITER

 LAUNCH_OBN

 LAUNCH_INFOSET_QUERY

 LAUNCH_FOLDER

 LAUNCH_BI_ENTERPRISE_REPORT

 LAUNCH_BI_QUERY

 LAUNCH_BI_TEMPLATE

 LAUNCH_KM_DOCUMENT

 LAUNCH_PORTAL_PAGE

 LAUNCH_VISUAL_COMPOSER

 LAUNCH_WEBDYNPRO_ABAP
 LAUNCH_WEBDYNPRO_JAVA

 LAUNCH_CRYSTAL_REPORT

 LAUNCH_XCELSIUS_DASHBOARD

Restarting a WD ABAP Application

The IF_FPM_NAVIGATE_TO interface contains a RESTART method. This method will restart the currently

running WD application.

Parameter Description

ID_HEADER_TEXT Text that will be displayed as title in the window.

ID_WD_CONFIGURATION An optional WD ABAP application configuration

IT_PARAMETERS An optional set of parameters that will be forwarded to the application

ET_MESSAGES Messages

EV_ERROR Is set to true if an error occurred

Note that there are some restrictions for the restart feature:

 The iView that is used to start the Web Dynpro application must contain the

application parameter system_alias=<system>.

 The iView exists on a page on its own which means only this application is
executed in the main window. If several applications are displayed in the main
window, the application that is used to execute the restart function is the only
one that is displayed after a restart.

 If the restart occurs from an external window, you must navigate to this window
with navigation mode 3.

 The window header can be transferred to the restart method. If no header is

transferred, the system displays the text Launchpad Start WD ABAP.

 In NetWeaver Business Client, a navigation bar cannot be displayed on the left-
hand side.

 If navigation takes place using object-based navigation (OBN) in the Portal or in
the NetWeaver Business Client that is connected to a Portal, the OBN Navigation

Mode must be set to User Set of Roles. If it is set to Source Role, the system cannot
find the targets following a restart because the restart changes the role context.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 213

For further information, see SAP Note 1285228.

Extracting Launchpad Content and Launch Service

To extract the content of one or more launchpads, you can use the function module READ_LAUNCHPADS.

This function module contains the following import parameters:

 ID_ROLE

 ID_INSTANCE

 ID_LANGU

All three parameters are optional. If you call the function module without any parameters you will get all
launchpads that exist in the client in all existing languages.

To launch a single entry of the extracted launchpad, call the Web Dynpro application
apb_lpd_launch_service. This application expects the following URL parameters:

 role

 instance

 application_id

It is also possible to add business parameters to the URL. These parameters are forwarded to the target
application.

Suspend and Resume

The Suspend and Resume feature enables an FPM application to remain in a suspended state when a user
navigates to a URL or any other Web Dynpro ABAP or Web Dynpro Java application. When the user
navigates back to the FPM application, the Suspend and Resume feature allows the application to be
resumed in the exact state it was before navigation occurred.

The basic settings to utilize this feature include the time out of suspended applications. Session
Management and the Suspend and Resume feature are provided by technology layers like Web Dynpro
ABAP Foundation, Portal, and ABAP Server etc and are not provided or influenced by FPM. Suspend and
Resume is supported in the following client environments:

 Stand-alone

 NWBC

 Portal

Suspend and Resume is currently limited to URL and Web Dynpro ABAP or Web Dynpro Java application
navigation. In the Report Launchpad Customizing, Suspend and Resume is only available for the URL and
Web Dynpro ABAP or Web Dynpro Java application category of Report Launchpads. The same is also

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 214

applicable to the API, in that only dynamic navigation to URLs via APIs can utilize the Suspend and Resume
methods.

There is a uniform method to enable both Suspend and Resume across all the clients. But the method in
which the external URLs get the information to navigate back to the Web Dynpro application varies. Only the
FPM‟s methods to suspend and resume are detailed here.

With the Suspend and Resume feature, it is possible to pass parameters back and forth to the URL from the
FPM application.

Suspending via Static Launchpad Customizing for URL Application Category

1. Open the Launchpad Customizing (transaction LPD_CUST).
2. On the Overview of Launchpads screen, choose New Launchpad.
3. Enter the Role, Instance and Description. Choose Continue.
4. On the Change Launchpad Role screen, choose New Application.
5. Enter the following details:

 Linktext – for example FPM_TEST

 Application Category – choose URL

 Application Parameters - enter the URL of the application to be opened on
suspension of the FPM application.

Note that you can also enter a description and application alias. The application
alias is recommended if you use APIs of the launchpad.

6. Check the Activate Suspend and Resume Functionality checkbox.

When the user uses this launchpad application to navigate away from the FPM application, the FPM
application is suspended.

Suspending via Static Launchpad Customizing for Web Dynpro ABAP or Web Dynpro Java
Application

Customizing in LPD_CUST is similar as above but has to select the WDA or WDJ in Application category
field.

1. Check the Activate Suspend and Resume Functionality checkbox after providing all
other information.

2. When the user uses this launchpad application to navigate away from the FPM
application, the FPM application is suspended.

Suspending via Launchpad API

It is possible from EhP1 of NW onwards to also use navigation dynamically, that is without creating a
launchpad Customizing. It is possible to enable Suspend and Resume for such navigation too.

For information on how to get a handle to IF_FPM_NAVIGATE_TO, see Navigation.

Once a handle is obtained to the IF_FPM_NAVIGATE_TO object, you can call the method LAUNCH_URL to

open external applications. This method takes in an input parameter IS_URL_FIELDS of type

FPM_S_LAUNCH_URL. In the structure FPM_S_LAUNCH_URL, the field USE_SUSPEND_RESUME must be set

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 215

to abap_true or „X‟. When the application is launched (refer to Dynamic APIs of the launchpad), the FPM

application is suspended.

Resuming a Suspended Application

When the user wants to navigate from the external URL back to the suspended FPM application, the FPM
event loop is triggered. This is the entry point back into the application.

The application reacts to the FPM event FPM_RESUME, which is accessed via the constant

CL_FPM_EVENT=> GC_EVENT_RESUME. The event data will contain the URL parameters that are passed

from the external URL back into the FPM application.

The key to access this is via the following key parameter:

CL_FPM_SUSPEND_RESUME_UTILITY=>CO_RESUME_URL_PARAMETERS. The value obtained is an internal

table of the type TIHTTPNVP, containing the URL key-values pair passed by the external application. Note

that this data is available only during the lifetime of the event object and is not stored by FPM. The
application maintains a copy if the user needs to access this information later.

Sample code to resume an application is shown below (in the Component Controller's PROCESS_EVENT

method):

METHOD PROCESS_EVENT .

 "We will need to check the Navigation mode and set it to the launch pad

accordingly.

 DATA lr_event TYPE REF TO cl_fpm_navigation_event.

 "Check if this is the resume event.

 CASE io_event->mv_event_id.

 WHEN cl_fpm_event=>gc_event_resume.

 get_resume_parameters(io_event).

 ENDCASE.

Method GET_RESUME_PARAMETERS

DATA: lr_fpm_event_data TYPE REF TO if_fpm_parameter.

 DATA: it_url_parameters TYPE tihttpnvp.

 lr_fpm_event_data = io_event->mo_event_data.

 CALL METHOD lr_fpm_event_data->get_value

 EXPORTING

 iv_key = cl_fpm_suspend_resume_utility=>co_resume_url_parameters

 IMPORTING

 ev_value = it_url_parameters.

At the end of this code, the internal table it_url_parameters contains the URL parameters passed back from
the external application. The above mentioned code, along with other information, can be found in the test

application FPM_TEST_SUSPEND_RESUME in the APB_FPM_TEST package.

Handling Dialog Boxes

Depending on the action required, you can manage dialog boxes in the following ways:

 Using the NEEDS_CONFIRMATION method during the FPM Event Loop

 Using the PROCESS_EVENT method for the handling of application-specific dialog
boxes

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 216

 Using the work-protect mode offered by the Portal and the NWBC (using the

IF_FPM_WORK_PROTECTION interface)

Triggering a Data-Loss Dialog Box in the FPM Event Loop

Each UIBB can request a data-loss dialog box during the FPM event loop.

To do this, return the pre-defined instance of the class CL_FPM_CONFIRMATION_REQUEST as detailed

below:

METHOD needs_confirmation

 IF …

 eo_confirmation_request = cl_fpm_confirmation_request=>go_data_loss

 ENDIF

ENDMETHOD

To display other confirmation dialog boxes, create your own instance of the class

CL_FPM_CONFIRMATION_REQUEST and add your own application-specific text.

Handling Application-Specific Dialog Boxes

To process an event in method IF_FPM_UI_BUILDING_BLOCK~PROCESS_EVENT (see chapter FPM

Events), it may be necessary to gather additional information from the user by means of a dialog box. Dialog
boxes may contain simple text and buttons, but they may also be more complex and include input fields,
checkboxes, etc.

The processing of dialog boxes in Web Dynpro programming can be cumbersome, since Web Dynpro dialog
boxes cannot be processed in a synchronous way (that is trigger the dialog box, wait for it to be closed and
continue processing). This means that the UIBB would need to return the result of the event processing (OK
or FAILED) before the dialog box could be processed.

To achieve synchronous dialog box handling, the FPM allows you to defer the processing of the event loop
and resume it after the dialog box has been processed. This procedure is described below:

Procedure

Deferring Current Event Processing

You defer the processing of the current event in the method PROCESS_EVENT. Sample code for this is
shown below:

ev_result = if_fpm_constants=>gc_event_result-defer.

Registering a Dialog Box

This procedure is purely Web Dynpro ABAP and not a feature of the FPM. Therefore, we recommend that
you read the Web Dynpro ABAP documentation regarding Web Dynpro ABAP dialog boxes in general.
Nevertheless, a short description of how to register a dialog box is detailed below:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 217

Firstly, the registration of the dialog box with Web Dynpro needs to be triggered in the method

PROCESS_EVENT, as this is the last method until program control returns to the FPM.

However, for an application-specific dialog box you need your own Web Dynpro ABAP View and the
registration of the dialog box is only possible from within this View. For this reason, in the method

PROCESS_EVENT you need to call a method of the View that is used for the application-specific dialog box.

However, as View methods cannot be accessed from within methods of the component controller, you need

to use the Web Dynpro ABAP event mechanism: raise an event in the method PROCESS_EVENT and register

an event handler on the corresponding View.

The process for this is described below:

1. Create a new Web Dynpro ABAP View and name it DIALOG BOX_CARRIER.
2. In the Component Controller, create a new Web Dynpro ABAP Event and name it

REGISTER_DIALOG BOX_EVENT.

3. In the method PROCESS_EVENT raise the Web Dynpro ABAP Event REGISTER_DIALOG

BOX_EVENT.

4. In the View DIALOG BOX_CARRIER, create a new method and name it

REGISTER_DIALOG BOX of method type event handler for the event REGISTER_DIALOG

BOX_EVENT.

5. In the method REGISTER_DIALOG BOX, use the ABAP Window API to create a dialog
box, register action handler methods to the buttons of the dialog box and register
the dialog box for opening.

6. Create Web Dynpro ABAP actions and handler methods for the actions that arise
from the dialog box; in this case, from the Yes and No buttons. In the example

above, the names are ONRESUME_EVT_OK and ONRESUME_EVT_FAILED.

The sample code below shows how this might look (the code uses a standard dialog box with buttons Yes
and No):

DATA: lo_api TYPE REF TO if_Web Dynpro_component,

 lo_window_manager TYPE REF TO if_Web Dynpro_window_manager,

 lo_view_api TYPE REF TO if_Web Dynpro_view_controller,

 lo_dialog box TYPE REF TO if_Web Dynpro_window,

lo_api = Web Dynpro_comp_controller->Web Dynpro_get_api().

lo_window_manager = lo_api->get_window_manager().

lo_view_api = Web Dynpro_this->Web Dynpro_get_api().

lo_dialog box = lo_window_manager->create_dialog box_to_confirm(

 text = 'some dialog box text... '

 button_kind = if_Web Dynpro_window=>co_buttons_yesno

 message_type = if_Web Dynpro_window=>co_msg_type_question

 window_title = 'some dialog box title...'

 window_position = if_Web Dynpro_window=>co_center).

CALL METHOD lo_dialog box->subscribe_to_button_event

 EXPORTING

 button = if_Web Dynpro_window=>co_button_yes

 action_name = 'ONRESUME_EVT_OK'
 action_view = lo_view_api.

1. CALL METHOD lo_dialog box->subscribe_to_button_event
 EXPORTING

 button = if_Web Dynpro_window=>co_button_no

 action_name = 'ONRESUME_EVT_FAILED'

 action_view = lo_view_api.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 218

lo_dialog box->open().

Resuming the Event

Once the required user input has been obtained, the frozen FPM event is continued (either receiving the

result OK or FAILED). To do this, call the FPM method RESUME_EVENT_PROCESSING within the action

handler methods for the buttons of the dialog box. The sample code below shows how this might look:

DATA lo_fpm TYPE REF TO if_fpm.

lo_fpm = cl_fpm_factory=>get_instance().

lo_fpm->resume_event_processing(if_fpm_constants=>gc_event_result-ok).

After the event is resumed, the remaining UIBBs are processed (if there is more than one UIBB).

The figure below summarizes the behavior described above:

IF_FPM_WORK_PROTECTION Interface

The FPM allows the application to make use of the 'work-protect mode' offered by the Portal and the NWBC
(that is, to display a data-loss dialog box when the user closes the application without first saving the data).

WD runtime CL_FPM
UIBB

requiring interaction
in processEvent

UIBBs
without interaction in

processEvent

onAction

Action

start event loop

Web Dynpro methods

FPM methods

Display popup

Process_Event

standard event loop

(ommitted)

Register popup and

button actions

return ‚DEFER’

Popup button

pressed
On_Action _Popup_Button

Resume_Event_Processing(‚OK’ | ‚FAILED’)

standard event loop

(ommitted)

Process_Event

Process_Event

1st part of event processing

2nd part of event processing

interupt event loop and

remember current state

restore the previous state

and resume event loop

Close popup

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 219

To achieve this, the application must „tell‟ the FPM whether it contains unsaved ('dirty') data. For this, the

FPM provides the Web Dynpro Interface IF_FPM_WORK_PROTECTION. It contains only one method, which is

described in the table below:

METHODS

Method
Name

Method Description

IS_DIRTY This interface can be implemented by any Web Dynpro component in your application which
is known to the FPM (for example any UIBB or a shared-data component). At runtime, the
FPM will detect all components implementing this interface. If any of these components
signals unsaved data, then the application is marked as „dirty‟. This application „dirty-state‟ is
then passed on by the FPM to the shell (that is, the Portal or the NWBC).

The shell-API requires this information as soon as the application state changes. Therefore, the

IF_FPM_WORK_PROTECTION~IS_DIRTY method is called by the FPM runtime during each roundtrip.

Therefore, it needs to perform this very quickly. Note that the FPM does not necessarily call the method

IS_DIRTY on all UIBBs that are currently visible. As soon as one UIBB informs the FPM that it has unsaved

data, the FPM does not need to call the method on the remaining visible UIBBs. For this reason, do not

assume that the IS_DIRTY method is called by the FPM on all visible UIBBs.

Your application can use the sample code shown below:

METHOD is_dirty.

 if * component contains unsaved data

 ev_dirty = abap_true.

 else.

 ev_dirty = abap_false.

 endif.

ENDMETHOD.

FPM Message Management

FPM message management is an integral part of FPM and is available to all applications that use the
standard floorplans. It guarantees consistent and guideline-compliant message handling.

Features

FPM message management consists of two parts:

 IF_FPM_MESSAGE_MANAGER Interface (Message Manager)
This interface provides you with methods to perform the following tasks:

o Clear messages
o Raise Exceptions
o Report messages

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 220

 Message Region

All messages to be reported are displayed in the Message Region. This UI element is included in
all FPM applications.

You can make the following changes to the Message Region in the Global Settings dialog box:

 Set the maximum message size
When the application displays your messages, the message area
expands to accommodate the number of messages that you enter in the
Maximum Message Size field. Once the number of messages exceeds the
maximum limit, a scroll bar appears in the message area. Thus you can
view messages other than those immediately visible in the message area.

 Turn on the message log
You can produce a log of the messages for your application. When the
message log is turned on, all the previously reported messages can be
seen. When a message is to be reported, the Display Message Log link
appears in the Message Region. Note that this link appears only when there
is at least one message in the log.

You can also turn on the message log by using the URL parameter

FPM_SHOW_MESSAGE_LOG=X. However, if you turn on the message log in the Global Settings

dialog box, you cannot turn it off using the URL parameter.

Using the FPM Message Manager

Procedure

1. In the Component Controller of your Web Dynpro Component, choose the Attributes

tab.

2. Declare an attribute of the component globally (for example MR_MESSAGE_MANAGER)

and declare the Associated Type as type IF_FPM_MESSAGE_MANAGER.

3. Choose the Attributes tab of your Component Controller. In the Web Dynpro DOINIT
method, create a handle to the FPM Message Manager (which is a read-only

attribute in the IF_FPM interface), as detailed in the code below:

Method Web Dynpro DOINIT

 "Get the handle to the IF_FPM interface

 Web Dynpro_this->MR_FPM = CL_FPM_FACTORY=>GET_INSTANCE()

 Web Dynpro_this->MR_MESSAGE_MANAGER = Web Dynpro_this->MR_FPM-

>MO_MESSAGE_MANAGER

Endmethod

T100 based message. This example is taken from the demo applications and can be found in the Web

Dynpro component FPM_HELLOSFLIGHT_OIF_DEMO in the APB_FPM_DEMO package.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 221

CALL METHOD Web Dynpro_THIS->MR_MESSAGE_MANAGER->REPORT_T100_MESSAGE

 EXPORTING

 IV_MSGID = 'APB_FPM_DEMO'

 IV_MSGNO = 009

 IO_COMPONENT = Web Dynpro_this

 IV_SEVERITY = if_fpm_message_manager=>GC_SEVERITY_ERROR

 IV_LIFETIME =

if_fpm_message_manager=>GC_LIFE_VISIBILITY_AUTOMATIC

 IV_PARAMETER_1 = lv_carrid_string

 IO_ELEMENT = lo_el_sflight_selection

 IV_ATTRIBUTE_NAME = `CARRID`.

When the message appears in the Message Region, the parameter &1 is replaced by the actual flight name.

IF_FPM_MESSAGE_MANAGER Interface

This programming interface provides you with methods for controlling message management in your FPM
application in a logical manner.

It provides you with methods to perform the following tasks:

 Reporting messages
There are three methods available to report messages (including T100
and Bapiret2 messages).

 Raising exceptions
There are four methods available to raise exception messages (including
T100 and Bapiret2 messages).

 Clearing messages
There is one method available to clear all messages.

Methods for Reporting Messages

The methods for reporting messages are provided by the IF_FPM_MESSAGE_MANAGER interface. This

interface provides the following methods for reporting messages:

 REPORT_MESSAGE

 REPORT_BAPIRET2_MESSAGE
 REPORT_T100_MESSAGE

 REPORT_OBJECT_MESSAGE

Note the following information relating to all reporting methods:

 By default, the message is not mapped to a context element.

 If there are minor inconsistencies while reporting the message, FPM
automatically takes alternative action (unless an exception is raised). The
following is the alternative action that FPM takes: If the message is reported to

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 222

be bound to a context element and if the element or the attribute is missing,
FPM reports the message without the binding.

 FPM raises an exception in the following cases:
o If the message lifetime is marked to be bound to a controller, but the

controller is NULL or not reachable.
o If the component for the message is missing.
o If the Message Lifetime is set to Manual and View, but the element or

attribute is missing.

Attributes

The attributes of the three methods for reporting messages are described in the table below.

Parameter Relevant Method Description

IO_COMPONENT All Passes an object reference to the
message manager. This object reference
is used to store the message. Preferably,
the Web Dynpro component, which raises
the message, must be passed here. You
can pass another object reference only in
the event of exceptions where the object
raising the message does not have a
handle to the Web Dynpro component (for
example an ABAP OO class) This is
important for those messages whose
lifetime is maintained manually by the

application. (see IV_LIFETIME). When

you create a message whose lifetime is
manual, the application creating such a
message must then delete the message
once it is no longer needed. In this case,
you must pass the component whose
messages need to be cleared. This helps
to prevent messages from a different
component being cleared by a component
that has not raised them. This could
happen when you re-use components
from different areas

IV_SEVERITY All The severity of the message to be
reported. There are three possible values,
as follows:

 Error (E)

 Warning (W)

 Success (I)

The default value is Error. These
messages affect the navigation in different
ways for each floorplan. Thus, navigation
relating to an error message in a GAF
application may be different to navigation

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 223

relating to an error message in an OIF
application. The following three values can
be passed:

 GC_SEVERITY_ERROR for Error

 GC_SEVERITY_WARNING for
Warning

 GC_SEVERITY_SUCCESS for
Success

This is an optional parameter. The default
is Error.

IV_LIFETIME All Determines when, where and how long a
message appears for. This is a very
important parameter and must be given
special attention. This parameter is a
combination of the following two elements:

 Lifetime: Determines how long
the message exists in the
message area; that is, the
creation and deletion of the
message. The available
lifetimes are:

o automatic: FPM handles
the destruction of the
message as defined by
the UI guidelines for the
floorplan

o Manual: the application
developer handles the
deletion of the message
from the message area.

 Visibility: Determines when the
message appears in the
message area. The following
values apply:

o Automatic: FPM takes
care of the visibility
based on the UI
guidelines

o View: the message is
visible as long as the
view to which the
message is bound is
available

o Controller: the message
is visible as long as the
controller that has raised

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 224

the message is available
(see the parameter
controller IO_ Controller
for details)

o Application: the message
is permanently displayed
(until it is deleted
manually by the
application developer)
and is visible whilst the
application is running.

o Pop-up: the message is
visible only in a dialog
box.

The default values for both Lifetime and
Visibility are Automatic. Not all
combinations of lifetime and visibility are
possible. Some combinations, for example
Lifetime = Manual + Visibility = Pop-up are
not available. The permitted combinations
are as follows (showing the constant to be
used - Lifetime + Visibility):

 GC_LIFE_VISIBILITY_AUTOMATIC

: Automatic + Automatic (Fully
handled by FPM)

 GC_LIFE_VISIBILITY_AUT_DIALO

G BOX: Automatic + Pop-up
(Creation and destruction
handled by FPM; visible as long
as the dialog box is visible)

 GC_LIFE_VISIBILITY_MANU_VIEW

: Manual + View (Should be
deleted by the application;
visible until the view that
created it is visible)

 GC_LIFE_VISIBILITY_MANU_CONT

: Manual + Controller (Should
be deleted by the application;
visible as long as the controller
that created it is visible)

 GC_LIFE_VISIBILITY_MANU_APPL

: Manual + Application (Should
be deleted by the application;
visible as long as the
application is running)

IV_PARAMETERS All A group of parameters of the type Web

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 225

Dynpro R_NAME_VALUE_LIST that can

be stored along with the message. This
will be passed to the Web Dynpro
message manager as is and will have no
visualize changes to the message. Refer
to the Web Dynpro message manager
documentation for further details

IR_MESSAGE_USER_DATA All Additional data that can be stored along
with the message. This does not influence
the message visually. This parameter can
be used by the application developers to
provide error resolution mechanism. See
the Web Dynpro help for further details.

IV_MESSAGE_INDEX All Numerical value indicating the order in
which the message is to be displayed. If
no value is passed (this is an optional
parameter), the message appears in the
order in which the Web Dynpro runtime
chooses to display it. Messages are sorted
for display, according to the following
attributes:

 Error severity

 Message index (parameter

MSG_INDEX)

 Context element (if it exists)

 Context attribute (if it exists)

IO_ELEMENT All A reference to a context element to which
the message is bound. The message is
then clickable and the focus shifts to a UI
element bound to this context element.

IV_ATTRIBUTE_NAME All The element attribute to which the
message must be mapped. This
parameter is used in conjunction with the

IO_ELEMENT. If the message is to be

mapped to more than one attribute, use

parameter IT_ATTRIBUTES instead.

IV_IS_VALIDATION

_INDEPENDENT
All Defines whether a message, referring to a

context attribute or a context element,
influences the execution of a standard
action. If the parameter‟s value is

ABAP_FALSE (default value), the standard

action is no longer executed after this
message is created. However, if the

parameter‟s value is ABAP_TRUE, the

standard action is executed.

IO_CONTROLLER All Pass the reference to the controller whose
lifetime will dictate the lifetime of the
messages which have the lifetime set to
the context.

IS_NAVIGATION_ALLOWED All Use this flag if you need to allow
navigation, even on an „E‟ message in the
GAF. Relevant for GAF applications only.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 226

IV_VIEW All The name of the view of the dialog box.
The error is then restricted only to the
dialog box. Otherwise there is a side effect
in that the error message (if a non-
automatic type) is also reported on the
main screen when the dialog box is
closed. Relevant only if the message
manager is used in application-specific
dialog boxes.

IV_MESSAGE_TEXT REPORT_MESSAGE Any free text that must be reported in the
message area. When used with the UI
element and attribute parameters, it
becomes a clickable free text message.

IS_BAPIRET2 REPORT_BAPIRET2

_MESSAGE
The BAPIRET2 structure directly in the

message. The severity of the message is

automatically selected from the BAPIRET2

structure. The T100 message that is

embedded in the BAPIRET2 structure is

used to display the message text.
Additionally, the lifetime, visibility and
context mapping can be set along with the

BAPIRET2 structure.

Note that if the BAPIRET2 structure

contains a severity value of A, the
message is converted into an exception.

IR_MESSAGE_OBJECT REPORT_OBJECT_MESSAG

E

Exception Object providing access to
message long text.

IT_ATTRIBUTES All Table of attributes to which the message
is mapped. Note that this parameter

overrides the IV_ATTRIBUTE_NAME if

both parameters are set.

IT_CUSTOMIZING_PARAMETER

S

ALL 1.Optional Parameter of type String table.
If the message needs to be mapped to a
context in ALV, then include constant

GC_REPORT_IN_ALV (present in interface

IF_FPM_MESSAGE_MANAGER) to this

importing parameter.

2. Optional Parameter of type String table.
When a permanent message needs to be
reported only in the view and not in any
dialog boxes, then include constant

GC_NAVIGATE_ERROR (present in

interface IF_FPM_MESSAGE_MANAGER) to

this importing parameter.

IV_MSGID REPORT_T100_MESSAGE Used when reporting a T100 based
message. Supply the parameter with the
message class.

IV_MSGNO REPORT_T100_MESSAGE The message number of the message

class specified by the IV_MSGID.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 227

IV_PARAMETER_1

IV_PARAMETER_2

IV_PARAMETER_3

IV_PARAMETER_4

REPORT_T100_MESSAGE Optional parameters for the message.

Mandatory Parameters

The table below shows which parameters are mandatory for each method:

Method Mandatory Parameters

REPORT_MESSAGE Message text

REPORT_T100_MESSAGE Message class and message number

REPORT_BAPIRET2_MESSAGE BAPIRET2 structure

Methods for Raising Exception Messages

The RAISE_EXCEPTION methods are provided by the IF_FPM_MESSAGE_MANAGER interface. This interface

provides the following methods for raising exceptions:

 RAISE_EXCEPTION

 RAISE_T100_EXCEPTION

 RAISE_CX_ROOT_EXCEPTION
 RAISE_BAPIRET2_EXCEPTION

All exceptions are logged into the system with the following details:

 the method that was used to raise the exception

 the text of the exception

 additional text (if used)

From SP13 onwards, there is no recovery mechanism from the exceptions.

Attributes

The following table describes the attributes of the four RAISE_EXCEPTION methods.

Parameter Relevant Method Description

IV_TEXT RAISE_EXCEPTION Optional text that can be passed while raising
a simple exception. This text is logged and can
later be used for analysis

IV_MSGID RAISE_T100_EXCEPTION Message class ID for the T100 message. Use
this parameter to raise an exception whose
text is based on the T100 message
mechanism.

IV_MSGNO RAISE_T100_EXCEPTION Message number of the T100 message class.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 228

IV_PARAMETER_1

IV_PARAMETER_2

IV_PARAMETER_3

IV_PARAMETER_4

RAISE_T100_EXCEPTION Optional message parameters.

IO_EXCEPTION RAISE_CX_ROOT_EXCEPTION The exception class inheriting from CX_ROOT.

This parameter is a mandatory parameter.

IV_ADDITIONAL_TEXT RAISE_CX_ROOT_EXCEPTION Additional text to be added while reporting an

exception based on CX_ROOT.

IS_BAPIRET2 RAISE_BAPIRET2_EXCEPTION The BAPIRET2 structure for raising an

exception.

Method for Clearing Messages

This method is provided by the IF_FPM_MESSAGE_MANAGER interface. Note the following information

relating to this method:

 The method clears messages from the Message Region and acts upon all those
methods that have Lifetime set to Manual.

 This is the only method to selectively clear those messages with a Lifetime set to
Manual from the Message Region.

 This method ensures that messages from a different component are not cleared
accidentally.

 The defaults for the parameters contain a negative semantic with respect to the
method name; if the method is called with defaults, all the messages are deleted.

Attributes

The following table describes the attributes for the CLEAR_MESSAGES method.

Parameter Relevant
Method

Description

IO_COMPONENT CLEAR_MESSAGES The component in which messages were previously
reported. Only those messages that were reported from this
component will be cleared. If this contains object references
other than components, then those object references will be
used. This is a mandatory parameter.

IV_EXCLUDE_ERROR CLEAR_MESSAGES Pass true if error messages belonging to the component are
not to be deleted. This is an optional parameter and the
default is false. This means that all the error messages
belonging to this component will be deleted unless this
parameter contains a true value. Looking at the parameter‟s
name, the parameter indicates that the default value (false)
has to be overridden only if error messages are to be saved
from being cleared and this parameter contains negative
semantic with respect to the method name.

IV_EXCLUDE_WARNING CLEAR_MESSAGES Default is false. Override it with true, if warnings raised for

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 229

the component are to be saved.

IV_EXCLUDE_SUCCESS CLEAR_MESSAGES Default is false. Override it with true, if success messages
raised for the component are to be saved.

Handling of FPM Message Manager in Non-FPM Dialog Boxes

The handling of FPM Message Manager is also possible in Non-FPM dialog boxes (that is in application
specific dialog boxes). FPM handles the messages with respect to the parent component and the dialog box
in terms of visibility and lifetime of a message.

Lifetime/Visibility Message Behavior

Automatic FPM takes care of the visibility based on the UI guidelines. The automatic
messages in the dialog box get cleared after every roundtrip or if a new message
is raised on a dialog box.

This behavior is similar to the automatic messages in the parent window.

View The message is visible as long as the view to which the message is bound is
available; this message is not transferred to the parent window if the dialog box is
closed.

Controller The message is visible as long as the controller that has raised the message is
available. This message would be passed to the parent if it is raised through the
same controller.

Application The message is permanently displayed, in the dialog box and the parent window
throughout the application, until it is manually cleared by the application developer.

Pop-up Pop-up: The message is visible only in a dialog box as long as the Non-FPM
dialog box is open.

Message Manager – ON_NAVIGATE Event

Applications can use the ON_NAVIGATE event to perform any action on click of the message link. This is
applicable only for messages which are displayed as a link in the message area.

While reporting a message, the IS_ENABLE_MESSAGE_NAVIGATION parameter must be set to X. Only
then will the message be displayed as a link. When this link is clicked, FPM raises an ON_NAVIGATE event;
the application performs its business logic by handling this event.

The parameters that are passed as part of event data (MO_EVENT_DATA) are as follows:

 ID (Type: String)

 CONTEXT_ELEMENT (Type: IF_WD_CONTEXT_ELEMENT)

 MESSAGE_ID (Type: String)

If the application needs to pass additional information which might be used in the action handler of the
ON_NAVIGATE event, use parameter IR_MESSAGE_USER_DATA while reporting a message. In the
ON_NAVIGATE event, to receive the information passed, get the ID from the mo_event_data method:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 230

 CALL METHOD MO_EVENT_DATA->GET_VALUE

 EXPORTING

 IV_KEY = 'MESSAGE_ID'

 IMPORTING

 EV_VALUE = lv_msg_id.

This ID can be used when calling the IF_WD_MESSAGE_MANAGER~GET_MESSAGE_FOR_ID method, which

returns all information about the message.

DATA: l_message TYPE if_wd_message_manager=>ty_s_message.

l_message = wd_this->message_manager->get_message_for_id(lv_msg_id).

l_message-msg_user_data gives the user data set while reporting the message.

FPM Message Manager FAQ

1. Can I use the Web Dynpro message manager along with the FPM message
manager?
Yes. However, you create and maintain your own reference of the Web Dynpro
message manager. Messages that are reported directly into the Web Dynpro
message manager will not be maintained by FPM after they are reported and the
application must handle the message independent of the FPM lifetime and visibility
functions. Exceptions logged directly into the Web Dynpro message manager are

not logged under the FPM_RUNTIME_MESSAGES checkpoint group.

2. I want to use the FPM floorplan but I do not want to use the FPM message area.
Can I do this?
Yes. Use the Web Dynpro message area. However, FPM message manager
functions such as automatic lifetime handling, consolidated dialog box display etc is
not then available.

3. Should I create a message area to use the FPM message manager?
No. If you are using a standard floorplan (for example OIF or GAF), the message
area is a standard part of an FPM application‟s UI.

4. Can I change the position of the message area?
No. If you create an additional message area, the messages are repeated in both
message area views.

5. I reported a message mapped to a context. I see only the text and the message is
not navigable. What is happening?
The element and the attribute do not contain valid references. In such a case, FPM
still displays the message but it is not navigable.

6. When I raise an exception, the screen dumps. When I examine the stack I see that
the IF_FPM_MESSAGE_MANAGER is the point where the dump occurs. Why?
As of SP13 of NW 7.00 and SP03 of NW7.10, there is limited support for exception
handling for FPM applications. Features such as recovery mechanisms from
exceptions, special exception screens, etc are not available. All

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 231

RAISE_XX_EXCEPTION methods in FPM will log any exception raised from the
method and then force a dump. In this manner, the applications are terminated.

Message Mapper

Messages that are displayed by the current system can contain technical terms which might not be
understood by everyone who work with the system. Message Mapper is a feature that is used to map
messages (error messages, warning messages, and information/success messages) that are currently
displayed by the system to a more understandable, user-friendly form.

With Message Mapper you can perform the following activities:

 Map messages to an alternative message to be displayed by the system

 Group messages into specific categories and have the system display an
alternative message for the category

 Hide messages

 Log messages in an application log

Message mapping can be performed by both SAP applications and customer applications.

Message mapping can be done for messages which are reported for GUIBBs also.

Enabling Message Mapper

You enable message mapping for an application in the component configuration editor of the application.
Choose Display -> Message Mapper Settings. The Message Mapper Settings dialog box appears. Select
Enable Message Mapping.

Message Mapping Fields

Message Context

Message Mapper can be called from different contexts of applications, for example, from ESS, HRAS, PLM,
and SRM and so on. Applications can specify their own contexts. The message context is a mandatory
parameter.

Applications can also use the context to describe a role. Roles can also be described as part of the context
or category. The application decides the context and category based on its own requirements.

A context can be, for example SRM, CRM, or ERP depending on the application that is using the Message
Mapper. A context could also be a role such as Employee or Manager with a specific category to differentiate
the roles further.

Message Categories

You can group messages into categories. Message categories can be created by SAP applications and
customers‟ applications. Customers cannot delete categories created by SAP applications, but they can add
new entries based on their own requirements.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 232

You can use categories to specify, for example, the following items: roles such as Administrator, Manager,
and Employee; technical groups such as No Authorization group or a Wrong Customizing group); functional
groups such as an SRM Shopping Cart Customizing group.

Examples:

 In the context of SRM, CRM, ERP and so on, you can create a category called
No Authorization. You can use it to display the alternate message “You are not
authorized to perform the changes” for all messages belonging to the No
Authorization category.

 In the context of SRM, CRM, ERP and so on, you can create a category called
Employee. You can use it to hide all warning messages from employees.

Message Namespace

There is a separate namespace for SAP and customer message mappings.

Customers can override the message mapping made by SAP applications if such mappings are not indicated
as final (Final is a field in the message mapping table (a table containing all mapping entries)). Customer
mappings have priority over SAP mappings. The namespace is not part of the message mapping API, but is
a part of the message mapping table. The customer namespace begins with “Z” or “Y”.

Message Source

You can map only T100 and BAPIRET2 messages; that is, the original messages passed to the Message
Mapper should be either T100 or BAPIRET 2 Messages.

The T100 or BAPIRET2 messages can be mapped to T100 or OTR or free text messages.

Generalization

Generalization refers to the process used by the Message Mapper to match system messages to alternative
messages. The way messages are mapped to system messages varies; messages can be mapped
specifically by specifying all fields of a message, or they can be mapped more broadly by specifying fewer
fields. When the application later reports a message, the Message Mapper checks which fields are present in
the reported message and whether there is a specific mapping for this collection of fields. The Message
Mapper starts the search for a mapping using the lowest level of generalization, G0, (it checks to see if there
is a mapping which includes all the fields) and it continues with a higher level of generalization until an
alternate message mapping is found. If all generalization levels are searched, and no mapping is found, the
original message is reported.

By default, the Generalization Type is Type 1.

Alternate messages are either T100 or OTR or free text messages. Applications can specify alternate
messages for a Message ID (within a particular context) without the message number.

You can provide alternate messages for the field combinations outlined in the following table:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 233

Generalization
Level

Message Fields

G8 Context

G7 Context Message Type

G6 Context Category

G5 Context Category Message Type

G4 Context Message Id Message Type

G3 Context Message Id Message No

G2 Context Message Id Message No Message Type

G1 Context Message Id Message No Category

G0 Context Message Id Message No Category Message Type

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 234

MESSAGE MAPPER FLOW

YES

Return original
message

NO

YES NO

NO

YES

NO
NO

User has specified
option for

Generalization

Get the path for the option
specified by the user

Get the default option and
the corresponding path

Is Generalization
allowed?

Mapping found
while generalizing?

Log the message (if
logging is enabled)

A

Do not report
message

NO

YES

YES

NO
Hide message?

Map original
message parameters
to alternate message

Log the message (if
logging is enabled)

Report the alternate
message

A

Log the message (if
logging is enabled)

STOP

Hide on Generalization
option

selected?

Stop Generalization

Log the message (if
logging is enabled)

Do not report
message

YES

YES

START

Mapping found for
the specified criteria

Hide message?

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 235

Changing Message Types

You can change the message type of the original message to a different message type in the alternate
message. If no alternate message type is described in the message mapping table, the message is reported
with its original message type.

Hiding Messages

You can choose to hide specific messages by selecting the Hide option when you map the alternate
message in the message mapping table.

Hiding Messages and Generalization

If you want to hide a message and use the generalization option, then the Hide on Generalization option
must be selected. To do this, choose Display -> Message Mapper Settings in the component configuration.

During generalization, if the Hide option is encountered, the system checks whether the Hide on
Generalization option is also selected in the configuration editor. If it is not selected, no further generalization
occurs and the original message is returned.

If you specify an alternate message and select the Hide option for a particular mapping, hiding will take
precedence and the alternate message is not reported.

Logging Messages

Mapped messages are logged under a separate group name. Only the original message is logged unless
generalization has occurred. If generalization has occurred, both the original and the alternate message are
logged.

Message logging is inactive by default, but you can control logging using the following methods:

Message Mapper Parameters

The following logging options are found in the Message Mapper Settings dialog box, in the Message Mapper
Parameters section:

 Always Enable Logging
All messages that are mapped are logged.

 Log on Generalization
Messages are logged only if mapping is not present for a specified criteria and a
subsequent level of generalization is considered.

 Log on Hide
Messages are logged only if they are hidden.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 236

URL Parameters

You can also use the following URL parameters to log messages:

 FPM_ALWAYS_LOG

This URL parameter controls message logging. If this parameter is set to X, then
logging is always enabled.

 FPM_LOG_ON_GENERALIZATION and FPM_LOG_ON_HIDE
These parameters are available for Log on Generalization and Log on Hide
respectively.

In addition to the above, the BAdI FPM_BADI_LOG_MAPPED_MSG is provided in which you can write specific

logic for message logging (for example, specific message logging based on roles). If the BAdI is
implemented, then the logging details written in the BADI take precedence over the logging details specified
as default, irrespective of the options selected in the configuration editor.

Mapped messages are logged under a separate group name in transaction SLG1. Use the following entries

to analyze the log:

Field Name Field Entry

Object FPM_MSG_MAPPER

Sub-Object RUNTIME

Generalization

You can set the Generalization Type in the Message Mapper Settings dialog box, under the Message
Mapper Parameters section. The following Generalization Types exist:

 Type 0 (no Generalization)

 Type 1 (Default Generalization)

Type 1: Default

G8 Context

G7 Context Message Type

G6 Context Category

G5 Context Category Message Type

G4 Context Message Id Message Type

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 237

G3 Context Message Id/Message No

G2 Context Message Id/Message No Message Type

G1 Context Message Id/Message No Category

G0 Context Message Id/Message No Category Message Type

The options mentioned above can be specified by a domain FPM_MSG_GENERALIZE, which has the
following value range:

 FPM00 - No Generalization
If you do not require generalization, then option FPM00 needs to be passed; the
alternate message (if present) is returned for the specified criteria, otherwise the
original message is returned.

 FPM01 - Type 1 – Default Generalization
If you do not pass any option, then the default option is FPM01 generalization.

Example

A message is reported from an application with parameters corresponding to G0 level of Generalization:

Context: SRM

Message ID: EBP

Message No: 123

Category: No Authorization

Message Type: E

FPM00 - No Generalization

If the entries exist for the above criteria in the message mapping customizing table, then a corresponding
alternate message is reported. For example, if an alternate message mapping exists in the customizing table
for mapping at G0 level (that is, for all the corresponding fields) with the alternative message text No
Authorization to change Purchase Order, this alternate message is displayed.

If no alternate message mapping exists in the message mapping table, then the original message is
displayed.

FPM01 (Default Generalization)

If no mappings exist in the customizing table for mapping at G0 level, but there is an entry at, for example,
G5 level for the same Context, Category and Message Type, the generalization concept is adopted
automatically and the alternate message text at G5 level is displayed.

Mapping Message Variables

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 238

Message variables in the original message are copied into the corresponding message variables in the
alternate message, according to the following conditions:

 If the original message contains message variables and the alternate message
does not contain message variables, the message variables are not displayed.

 If the alternate message and the original message contain the same number of
message variables, there is a one to one mapping between the message
variables; message variable &1 in the alternate message is copied to message
variable &1 in the original message, message variable &2 in the alternate
message is copied to message variable &2 in the original message, and so on.

 If the alternate message does not contain the same number of message
variables as that of the original message, then only the message variables
described in the alternate message are displayed and there is a one to one
mapping of the same, that is, if the original message has message variables &1,
&2, and &3 and the alternate message has only message variables &2, then
only message &2 is shown in the alternate message and the remaining message
variables are ignored.

 If the alternate message has variables & & & & instead of &1 &2 &3 &4, then the
first variable & corresponds to message variable &1, the second variable & to
message variable 2, the third variable & to message variable 3 and so on.

API Changes for Message Mapping

The following additional parameters are available for message mapping in the Message Manager API:

Parameter Name Parameter Type Opt Data Type

IV_CONTEXT Importing Y FPM_S_MSG_MAPPER-MSG_CONTEXT

IV_CATEGORY Importing Y FPM_S_MSG_MAPPER-MSG_CATEGORY

IV_GENERALIZATION Importing Y FPM_MSG_GENERALIZE

When reporting a message from an application, you can pass these optional parameters to use in message
mapping. Example values are shown below:

 IV_CONTEXT = SRM

 IV_CATEGORY = Limit exceeded

 IV_GENERALIZATION = FPM01 (Default Generalization)

The following methods have been enhanced with the above optional parameters corresponding to the
Message Mapper:

 IF_FPM_MESSAGE_MANAGER~REPORT_T100_MESSAGE
 IF_FPM_MESSAGE_MANAGER~REPORT_BAPIRET2_MESSAGE

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 239

 Customizing Tables for Message Mapper

The following tables are available for message mapping:

 FPM_T_MSG_MAPPER

This is the main customizing table for mapping messages.

 FPM_MSGCATEGORY

This table is for customizing message categories.

 FPM_CATEGORYT

This is a text table for FPM_MSGCATEGORY.

The fields for each table are described in detail below.

Table FPM_T_MSG_MAPPER

Field Field Type Description Field
Entry

NAMESPACE FPM_NAMESPACE Namespace for Message Mapper. Mandatory

MSG_CONTEXT FPM_CONTEXT FPM application context name. Indicates, for

example, the business unit or role in which the

message is mapped.

Mandatory

MSGID SYMSGID Message class of system message. Optional

MSGNO SYMSGNO Message number of system message. Optional

MSGTY SYMSGTY Message type of system message. Optional

MSG_CATEGORY FPM_MSG_CATEGORY Message category of system message. Optional

ALT_MSGID SYMSGID Message class for alternate message. Optional

ALT_MSGNO SYMSGNO Message number for alternate message. Optional

ALT_MSG FPM_ALT_MSG Alternate message. Type your message text

here.

Optional

ALT_MSGTY SYMSGTY Message type for alternate message. Optional

HIDE_MSG BOOLEAN Hides the message. Optional

FINAL BOOLEAN Ensures that the message mapping cannot be

edited.

Optional

Table FPM_MSGCATEGORY

Field Field Type Description Field Entry

MSG_CATEGORY FPM_MSG_CATEGORY Message category. Mandatory

NAMESPACE FPM_NAMESPACE Namespace for Message

Mapper.

Mandatory

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 240

Table FPM_CATEGORYT

Field Field Type Description Field Entry

MSG_CATEGORY FPM_MSG_CATEGORY Message category. Mandatory

NAMESPACE FPM_NAMESPACE Namespace for Message

Mapper.

Mandatory

LANGU SPRAS Language key. Optional

MSG_CATEGORY_NAM FPM_MSG_CATEGORY_NAM

E

Description of the message

category.

Optional

 Maintenance Views for Message Mapper

The following views are available for message mapping:

 FPM_V_MSG_MAPPER:

The maintenance view for table FPM_T_MSG_MAPPER. When a SAP application has
marked an entry as Final, then it cannot be overridden by Customers.

 NAMESPACE and MSG_CONTEXT fields are mandatory.

 FPM_VMSGCATEGORY:

The maintenance view for table FPM_MSGCATEGORY and FPM_CATEGORYT.

 NAMESPACE and MSG_CATEGORY fields are mandatory.

FPM Error Page

The Error Page allows FPM applications to exit from the application in a clean way.

Sometimes an application may face a serious problem and it is not possible to continue further. In that case
application can display an error page which describes the problem to the end user. No further navigation is
possible after navigating to error Page.

The picture below shows an example of how error page will look.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 241

Structure

The structure of error page is as follows:

 The Title is always Error.
This cannot be influenced by different applications.

 A short text or short description about the problem can be displayed in message
area.

 The Error Details part will have sub parts to display more information

 Technical Exception will display the technical problem as provided by the
application.

 Error description will display the long text of the problem.

 Additional information will display additional information in form of Knowledge
Management doc created using transaction SE61 that applications might want to
display.

Features

The features of error page are:

 Navigation to error page via API
The IF_FPM interface has an additional DISPLAY_ERROR_PAGE method. This
method can be called from application to display the error page.

Method
name

Parameters Description

DISPLAY_ER

ROR_PAGE

IO_ERROR_DETAILS–

type

IF_FPM_ERROR_DETA

ILS

This method is called
from application passing
the error data, to display
the error page.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 242

 Support for T100 messages, Bapiret2, Exception object and OTR to pass error
data.

There is a factory class for creating error data. This factory class will enable the
applications to create error data in a structured format using any of the following
sources, which will be displayed on the error page.

Class: CL_FPM_ERROR_FACTORY.

Table: Static methods of class: CL_FPM_ERROR_FACTORY

Method name Parameters Description

CREATE_FROM_BAPIRET2 IS_BAPIRET2

IV_TECHNICAL_EXCEPTION

IV_ADDITIONAL_INFO

IV_ERROR_ID

RO_ERROR_DETAILS

It is used to created error data
if the application has error
information in form of bapiret2.

CREATE_FROM_T100 IS_T100

IV_TECHNICAL_EXCEPTION

IV_ADDITIONAL_INFO

IV_ERROR_ID

RO_ERROR_DETAILS

It is used to created error data
if the application has error
information in form of T100
table.

CREATE_FROM_OBJECT IO_EXCEPTION_OBJ

IV_TECHNICAL_EXCEPTION

IV_ADDITIONAL_INFO

IV_ERROR_ID

RO_ERROR_DETAILS

It is used to created error data
if the application has error
information in form of
exception object.

CREATE_FROM_OTR IV_OTR

IV_TECHNICAL_EXCEPTION

IV_ADDITIONAL_INFO

IV_ERROR_ID

RO_ERROR_DETAILS

It is used to created error data
if the application has error
information in form of OTR.

CREATE_FROM_EMPTY_DATA IV_ERROR_ID

RO_ERROR_DETAILS

To get error object when no
error data is available.

Example:

 data: lr_fpm type ref to if_fpm.

 lr_fpm = cl_fpm_factory=>get_instance().

In case of T100 error data*

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 243

 data:lv_t100 type symsg.

 lv_t100-msgty = 'E'.

 lv_t100-msgid = 'APB_FPM_DEMO'.

 lv_t100-msgno = 10.

 call method lr_fpm-

>display_error_page(cl_fpm_error_factory=>create_from_t100(

 is_t100 = lv_t100

 iv_error_id = 'TEST_APPLICATION'

 iv_technical_exception = 'Test:Null Object Exception'

 iv_additional_info = 'FPM_DEMO_SFLIGHT_ADD_INFO')).

 exit.

 Logs can be viewed using transaction SLG1
Logs can be later seen using SLG1 transaction in the corresponding system

under the Object: FLOORPLAN_MANAGER object, the RUNTIME sub object, or the
External ID (Error ID if provided). The error ID can be passed from application
while calling the error page. The log contains the long text and short text of the
problem.

Handling of Transactions

Transactions can be handled in a systematic manner in FPM by implementing the Web Dynpro interface

IF_FPM_TRANSACTION. This interface guarantees you the following advantages:

 There is a logical sequence in which the interface methods are called.

 The transaction steps can be split up into the sequence in which they are
supposed to be processed.

 There is a check – save – validate sequence that provides high transaction
integrity.

 The check – save – fail – recover sequence provides the required robustness to
the transaction.

Using the Transaction Interface

1. In the Web Dynpro ABAP Workbench, select a component that will contain the business
logic to be executed on a save event. This could be any component known to the
FPM (including any UIBB or Shared Data component used by the UIBBs of your
application).

2. In the preview, choose Implemented Interfaces and, in edit mode, add the

IF_FPM_TRANSACTION interface.
3. Save your entry.
4. In the Action column, choose the Reimplement button and ensure that the icon in

the Implementation State column turns green.
5. Activate your component. In the Activation dialog box, ensure that all elements are

selected and choose Save. You have now implemented the Transaction interface
and if you open the Component Controller component, you can see the methods
associated with it on the Methods tab.

6. In any Save event, data needs to be saved to a database. This can be realized in
the following ways:

 Use a shared data component (see section on shared data for further details).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 244

 Use direct context binding.

 Use an assistance class.

The decision to use any or a combination of the above methods is taken by the application developer.

Transaction Interface FAQ

 On what event will these methods be called? These methods will be invoked by
the standard FPM SAVE event.

 Can I have the FPM call these methods on my own custom event? No. These
methods are called as part of the standard FPM event loop and hence will not
react to custom events.

 Can I have multiple components implement this interface in the same
application? Yes. The FPM will call all the methods on all the implementing
components. But our general recommendation is to use only one central
component for transaction handling.

IF_FPM_TRANSACTION Interface

This Web Dynpro interface provides you with methods to handle transactions in a systematic manner by
FPM. This is an optional interface; an application can handle the transactions independently, without
implementing the interface.

Methods

The IF_FPM_TRANSACTION interface contains the methods described in the table below. Note that once the

interface is implemented, the FPM identifies the corresponding component that has the method to be called,
in sequence and calls the methods on this component in the same sequence as defined below.

Method Name Method Description

CHECK_BEFORE_SAVE This method has a return parameter which indicates whether the validation
before a save to the database is successful. Use this method as a trial for
saving, and return a true if the trial save was successful and false if it was
not.

SAVE This method is used to perform the actual save and any possible commit. It
is called when the CHECK_BEFORE_SAVE has returned a false (note that
the semantic of the return parameter of the CHECK_BEFORE_SAVE is
negative and reads „rejected‟. In other words, a false value for rejected
means that the CHECK_BEFORE_SAVE was successful). If there are errors
while saving, you must return rejected = true so that the
AFTER_REJECTED_SAVE can be called. If the save was indeed successful,
then the method AFTER_COMMIT is called. Refer to the flow chart for more

details.

AFTER_COMMIT You can perform cleanup activities such as releasing database locks,
releasing other resources, triggering an event for processing after a
successful commit.

AFTER_REJECTED_SAVE Here you can perform your roll back activities. You can also release locks
and resources.

The methods are called in the sequence depicted in the figure below:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 245

A detailed sequence diagram of the method calls can be found in the FPM Design Document.

No

Allow the

application to

handle the

event internally
Call the interface methods

Yes

CHECK_BEFORE_SAVE

SAVE

Start event

processing

Exception?

Was save not

successful?

AFTER_COMMITAFTER_REJECTED_SAVE

Complete transaction event processing

No
Yes

Is transaction

interface

implemented?

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 246

Resource Management

As of SAP NetWeaver 7.0 enhancement package 1 it is possible for UIBBs to be made transient in their
behavior. Transient behavior means that UIBBs, which are not visible, can be removed from memory so as
to increase the performance and the memory footprint of the application.

The transient behavior is applicable to OIF, GAF, and OVP floorplans.

In addition to freestyle UIBBs, this feature has been extended for Tabbed UIBBs, Form GUIBBs, List
GUIBBs, and FPM dialog boxes.

With regard to the Tabbed GUIBB, transient behavior is applicable for

 Pure Master-Detail (the application is built only on the Master Detail)

 Mixed Master-Detail (one of the view switches is a Tabbed component)

With regard to FPM dialog boxes, the component is released only while closing a dialog box. This is because
the parent UIBB is still displayed when opening a dialog box and therefore cannot be released.

Releasing a Component

Technically, a UIBB is an interface view and this, by itself, cannot be released from memory, hence the FPM
releases the component containing the UIBB based on certain rules. These rules are as follows:

 The application must use the new schema available from EhP1 onwards.

 The application developer must have set the transient flag to true via the FPM
Configuration Editor.

 The FPM framework finds that it is technically feasible to release the component.

 The UIBBs implement the Resource Manager interface and do not veto the

transient decision passed by the application via the ON_HIDE method.

 The UIBB has not implemented the Resource Manager interface (meaning that it
does not have the possibility to veto).

A UIBB is defined and identified by the following key: configuration + component + interface view.

The transient behavior can be specified only during design time at the level of the application and not at the
level of a UIBB or its usage.

The transient behavior of the UIBBS can be handled in one of the following ways:

 One UIBB per component
The component contains only one interface view which is used as a UIBB. When
the UIBB is removed from the view assembly, the component that contains this
UIBB is released.

 Multiple UIBBs per component

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 247

The component is released only when all the interface views that behave as
UIBBs are no longer part of the view assembly, and the next set of UIBBs (for
the forthcoming view assembly) does not contain a UIBB from this component.
In such a case, the component is only released when all the interface views of
this component are no longer part of the visible view assembly. Note that when
one of the interface views (UIBBs) is removed from the view assembly, the
component remains alive if other interface views of the same component are still
part of the view assembly or part of the next view assembly.

If the application developer has set the global flag to transient, meaning that the UIBBs (components) can be
released, then the FPM will investigate whether the component can be released.

There are instances when, even if the application developer has set the default to transient, the component
containing the UIBBs cannot be released. These instances are described below:

 The component is held as a used component by another component.

 There are UIBBs from the same component that is still being displayed.

 The component implements an FPM interface that does not allow it to be
released.

Interfaces which restrict the release of the component are:

 IF_FPM_SHARED_DATA

 IF_FPM_TRANSACTION

 IF_FPM_APP_CONTROLLER

Any of the CONF Exit interfaces (for example):

 IF_FPM_OIF_CONF_EXIT

 IF_FPM_GAF_CONF_EXIT

 IF_FPM_TABBED_CONF_EXIT

To evaluate whether to release a component, the FPM completes the following steps:

1. FPM checks for the presence of the Global flag in the Global Settings dialog box in
the FPM Configuration Editor. If it is not present, then it will treat all the UIBBs for
this application as non-transient and hence will not release any components.

2. FPM reads the configuration global flag to see if the configuration is set to transient.
If the configuration is non-transient, then this information is passed on to the UIBBs
and FPM ignores the transient behavior; that is, it does not release the components.

3. FPM reads the configuration and sees that the global flag is set to transient. The
following options are then available:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 248

 FPM checks the technical feasibility of the component being released and if it
is not feasible, it retains the component.

 If it is technically feasible to be released, it checks if the
IF_FPM_RESOURCE_MANAGER interface has been implemented by the

component. If the interface is implemented, it calls the on_Hide method else
releases the component.

 In the on_Hide method, it checks for the veto value from the UIBB. If the
UIBB has not vetoed the release state, then FPM releases it.

 Otherwise, it will retain it.

Settings for Transient Behaviour

Depending on how you want your application to use transient behavior, you can make the settings described
in the following table.

Requirement Transient
Flag

Implement
IF_FPM_RESOURCE_

MANAGER

Veto Coding with
the
resource
manager to
handle
application
data

I do not want transient
behavior for any UIBB and I
do not want to release any
memory.

False NA NA

I do not want transient
behavior for any UIBB but I
would like to release some
resources.

False Yes NA Yes
Based on need
from business
logic.

I want all my UIBBs to be
transient. I do not have the
need to release any
resources explicitly.

True NA NA NA

I want all my UIBBs to be
transient. I want to release
some resources explicitly.

True Yes No Yes
Based on need
from business
logic.

I want only some of the
UIBBs to be released. I
would like to retain some due
to business logic reasons.

True Yes Yes (only for
those that do
not need to
be released).

Based on need
from business
logic.

I only want some of the
UIBBs to be released. Some
UIBBs I would like to retain
due to business logic
reasons. For those UIBBs
that are transient, there is no
need to release any
resources.

True Only on those that
need to veto (or not be
released).

Yes (only for
those that do
not need to
be released).

NA

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 249

Setting the Transient Flag

Procedure

1. Start the FPM Configuration Editor for your application and go to the component
configuration screen.

2. Choose Change and select Global settings.
3. The Global Settings dialog box contains the field for the transient setting.
4. Use the F4 help for Transient State. For the transient behavior, choose T.
5. Save the configuration.

Result

All the UIBBs in the application are now transient.

Using IF_FPM_RESOURCE_MANAGER to Veto Release Decision

Procedure

1. Open transaction SE80 and open the Web Dynpro component of your application.

2. Add IF_FPM_RESOURCE_MANAGER to Implemented Interfaces tab.

3. In the Component Controller, on the Methods tab, the ON_HIDE method is visible.

The ON_HIDE method has an importing parameter called IV_RELEASE_COMPONENT, which provides

information to the UIBB about the FPM‟s decision on the release feasibility for the component containing this
UIBB. The UIBB reacts to this parameter only if the value is true. If the UIBB does not want itself to be

released, then it sets the exporting parameter EV_VETO_RELEASE to true (the default is false).

FPM will use the veto parameters only if the IV_RELEASE_COMPONENT is true. If the UIBB sets the veto to

true, then the component containing the UIBB is not released, even if it is capable of being released.

The sample code below demonstrates this:

method ON_HIDE.

 data: lv_veto type boole_d.

 IF IV_RELEASE_COMPONENT = abap_true.

 "do some business logic here and based on it, set the flag

 lv_veto = abap_true.

 ENDIF.

 IF lv_veto = abap_true." some bus.

 EV_VETO_RELEASE = abap_true. "This UIBB will not be released.

 ENDIF.

endmethod.

The following table is helpful in understanding the final action taken by FPM.

IV_RELEASE_COMPONENT EV_VETO_RELEASE FPM action

False True/False Ignore the veto value; do not release
component.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 250

True False Release the component.

True True Do not release the component.

Using an FPM Application Controller

Sometimes it is necessary for the application to participate in all FPM events that happen during the entire
lifetime of the application, with one arbitrary single component instance. This might be necessary for
controlling and steering the application as a whole.

This is not possible, for example, with simple UIBBs since the methods provided by the Web Dynpro

interface IF_FPM_UI_BUILDING_BLOCK only participate in the FPM event loop when the corresponding

UIBBs are visible at the time the event loop happens or become visible after the current event loop has
finished successfully. Furthermore the UIBBs cannot make assumptions about the sequence in which they
are called. Therefore, an application controller is provided that closes this gap and provides the possibility to
control and steer the application as a whole.

Implementing the Application Controller

The application controller is a singleton instance of a Web Dynpro component provided by the application. In
order to use a Web Dynpro component as an application controller, complete the following steps:

1. Choose a Web Dynpro component and implement the Web Dynpro interface

IF_FPM_APP_CONTROLLER.

2. Insert the component you have chosen into the OIF or GAF component
configuration.

To do this, open the component configuration with the FPM Configuration Editor.
Choose Display and choose Global Settings. In the dialog box, enter the
component.

Regarding the behavior of instantiating the Web Dynpro components and their participation within the FPM
event loop, the Web Dynpro interfaces provided by the FPM can be divided into two categories:

When using the interfaces IF_FPM_APP_CONTROLLER and IF_FPM_OIF_CONF_EXIT (or

IF_FPM_GAF_CONF_EXIT) together, they must be implemented by the same Web Dynpro component.

Furthermore, it is recommended to implement the Web Dynpro interface IF_FPM_SHARED_DATA also in that

Web Dynpro component (but only if this Web Dynpro interface is needed).

IF_FPM_APP_CONTROLLER Interface

This Web Dynpro interface provides you with methods to allow the application to participate in all FPM
events that happen during the entire lifetime of the application.

Methods

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 251

This interface contains similar methods to the Web Dynpro interface IF_FPM_UI_BUILDING_BLOCK.

The interface IF_FPM_APP_CONTROLLER has two corresponding methods with the prefix BEFORE_ and

AFTER_ for each of the IF_FPM_UI_BUILDING_BLOCK methods, for example, BEFORE_PROCESS_EVENT

and AFTER_PROCESS_EVENT.

As the names suggest, the method BEFORE_PROCESS_EVENT is called immediately before another call to

the corresponding UIBB method PROCESS_EVENT; the AFTER_PROCESS_EVENT is called immediately after

all calls to PROCESS_EVENT are finished.

Using an Application-Specific Configuration Controller

Using an application-specific configuration controller (AppCC) allows you to do the following:

 Make global checks (checks affecting more than one UIBB)

 Make global adjustments for FPM events

 Read the structure of your application at runtime

 Change the structure of your application dynamically

This is the place where all actions affecting more than one single UIBB can be performed. Using an AppCC
is optional; implement an AppCC only if you need one of the features which the AppCC offers.

Implementing an AppCC Component

To provide your application with an AppCC, you implement one of the following Web Dynpro interfaces in a
Web Dynpro component:

 IF_FPM_OIF_CONF_EXIT for an OIF application

 IF_FPM_GAF_CONF_EXIT for a GAF application

This Web Dynpro component is either one of the components already used within your application or is a
completely new one. To declare the AppCC component to FPM, proceed as follows:

1. Start the FPM Configuration Editor for your application component and open the
Component Configuration screen.

2. In the control region, choose Change Global Settings .
3. In the Global Settings dialog box, enter the Web Dynpro Component and the

Configuration Name.
4. Choose Save.

If your AppCC has declared a static usage to a component implementing IF_FPM_SHARED_DATA, this

shared data component is instantiated and attached automatically by the FPM framework. This ensures that
all components within your application, which access the shared data component, will see the same instance
of it.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 252

Methods

The AppCC interface contains only one method for each floorplan application:

 OVERRIDE_EVENT_OIF
 OVERRIDE_EVENT_GAF

These methods pass an object of type IF_FPM_OIF (or IF_FPM_GAF), which serves as an API for the

applications. The OVERRIDE_EVENT_OIF (or OVERRIDE_EVENT_GAF) method is called at the start of event

processing on all visible UIBBs immediately after the FLUSH method has been called.

Features

The AppCC application programming interface provides you with the following features:

 Cancelling events
With the AppCC you can perform global checks which apply to more than one
UIBB. For checking purposes, the event is stored as an attribute in the

IF_FPM_OIF (respectively IF_FPM_GAF) interface of the AppCC. You can cancel

an event out of the AppCC by calling the CANCEL_EVENT method of the AppCC.

 Selecting a variant
If there is more than one variant configured, you can select a specific variant to

be used in an event by calling SET_VARIANT method in the IF_FPM_OIF

respectively IF_FPM_GAF interface.

 Adjusting events
The IF_FPM_OIF respectively the IF_FPM_GAF interface provides the currently
processed FPM event as a changeable attribute. Therefore, it is possible to
change an event by adding, removing, or changing event parameters. You also
can replace an event.

 As the AppCC is called right at the beginning of the event loop, changing an
event has the same result as if changed event had been raised instead of the
original event.

 Reading the configuration at runtime
The AppCC provides you with several methods which allow you to read the
configuration data at runtime. The following table gives you an overview of all
methods available for all types of floorplans.

Method Method Description

GET_CURRENT_STATE Returns the current navigation state within the
application.

GET_VARIANTS Returns a list of all available variants.

GET_UIBB_KEYS Returns a list of all UIBB assigned to a
specified main step, substep, main view or
subview.

GET_UIBB_KEYS_FOR_CONF_STEP Returns a list of all UIBB assigned to a

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 253

confirmation screen.

GET_UIBB_KEYS_FOR_INIT_SCREEN Returns a list of all UIBB assigned to an initial
screen.

The following table gives you an overview of all methods available for an OIF application.

Method Method Description

GET_MAINVIEWS Returns a list of all main views for a given variant.

GET_SUBVIEWS Returns a list of all subviews for a given main view.

The following table gives you an overview of all methods available for a GAF application.

Method Method Description

GET_MAINSTEPS Returns a list of all main steps for a given variant.

GET_SUBSTEP_VARIANTS Returns a list of all substep variants for a given main step.

GET_SUBSTEPS Returns a list of all substeps for a given substep variant.

GET_HIDDEN_MAINSTEPS Returns a list of all hidden main steps for a given variant.

Changing the configuration at runtime

The AppCC provides you with several methods if you want to change the configuration data at runtime. The
following table gives you an overview of all methods available for all types of floorplans.

Method Method Description

ADD_UIBB Adds dynamically another UIBB to a main view, subview, main step, or
substep.

REMOVE_UIBB Removes dynamically another UIBB to a main view, subview, main step,
or substep.

The following table gives you an overview of all methods available for an OIF application.

Method Method Description

ADD_MAINVIEW Adds dynamically another main view at runtime.

REMOVE_MAINVIEW Deletes dynamically a given main view at runtime.

ADD_SUBVIEW Adds dynamically another subview at runtime.

REMOVE_SUBVIEW Deletes dynamically a given subview at runtime.

RENAME_MAINVIEW Renames dynamically a given main view at runtime.

RENAME_SUBVIEW Renames dynamically a given subview at runtime.

SET_SELECTED_SUBVIEW Changes the target subview within a given main view.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 254

This method must only be used in order to enforce a given
main view to switch to the provided subview instead of the
default subview.

The following table gives you an overview of all methods available for a GAF application.

Method Method Description

RENAME_MAINSTEP Renames dynamically a given main step at runtime.

RENAME_SUBSTEP Renames dynamically a given substep at runtime.

ENABLE_MAINSTEP Enables or disables a given main step at runtime.

HIDE_MAINSTEP Hides a given main step within the roadmap.

The affected main step will not be visible as a main step in the
roadmap anymore. Nevertheless, the hidden main steps continue to
be processed in the background in order to keep the business logic
untouched.

Implementing an AppCC Class

You can use a simple ABAP OO class as an AppCC. Enter the name of an ABAP OO class, implementing

the ABAP OO interface IF_FPM_<floorplan>_CONF_EXIT, in the WD component name in the Global

Settings dialog box (if a WD component with the same name already exists, the WD component is used).

The ABAP OO AppCC offers the same methods and options as the WD AppCC and works in the same way.
The only difference is that the AppCC itself cannot be configured.

Sharing Data between UIBBs from Different Components

When the UIBBs of an application are implemented in several components, there is often the need to share
data between these components. Technically, there are several approaches which you can take to achieve
this. This is described in the following chapters.

For this purpose, the FPM offers Shared Data components.

This is an optional FPM feature which meets most applications‟ demands. However, if needed, it can be
replaced by other technical alternatives as described in Other Options for Sharing Data.

Using a Shared Data Component

A shared data component is a Web Dynpro component which implements the IF_FPM_SHARED_DATA

interface. This interface contains no methods or attributes but serves as a marker interface only. Each

component (for example UIBB, FPM_OIF|GAF_CONF_EXIT component) which wants to use a shared data

component needs to declare a usage to the shared data component. For this, the technical type of the usage

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 255

does not need to refer to IF_FPM_SHARED_DATA (this would mean that it would not have accessible

methods/attributes) but link to the actual component itself.

The lifecycle handling is now handled completely by the FPM. Whenever a component is instantiated by the
FPM (for example a UIBB which is configured for a given screen), the FPM analyzes all usages of that

component. If it detects a usage pointing to a component which implements the IF_FPM_SHARED_DATA

interface, a singleton of this shared data component is automatically attached to the usage.

As a result, an application must proceed as follows to share data using the shared data interface:

 Create a component which implements the IF_FPM_SHARED_DATA interface.
This component contains methods to retrieve data from the business logic and
exposes the extracted UI data via its Web Dynpro context or interface methods.

 Each component accessing this shared data defines a usage of the shared data
component. This usage is automatically instantiated by the FPM.

 The consuming component can now communicate with the shared data
component via Web Dynpro context mapping, attribute access or method calls.

Other Options for Sharing Data

There are other options to share data between Web Dynpro components besides the FPM shared data
concept. There are occasions when it is best not to use a Shared Data component, as detailed below:

 There is already an application-specific API available which serves as a „data
container‟ and can be accessed by several components.

 The data needs to be shared not only between Web Dynpro components but
also between other entities, such as ABAP OO classes, function groups, etc.

 The amount of data to be shared is so large that putting it into a Web Dynpro
context would result in performance and memory consumption issues.

In these cases, the application can consider using techniques such as the following:

 An ABAP OO class which is accessible as a singleton, so that all consumers
share the same instance.

 A function group with appropriate function modules.

Determining Navigation State Information at Runtime

For some use cases it is necessary to determine the current navigation state of the application at runtime. To

support this, the IF_FPM interface provides the method GET_RUNTIME_INFO. This method allows for

example to determine which subview is currently selected in OIF or which substep will be displayed after the
event in GAF.

There are always two states which can be determined: The state before the current event and the target
state after the event. As the target state might change during the event loop there are the following
restrictions regarding the point in time when this API can be used:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 256

 The current State can be determined from NEEDS_CONFIRMATION to

PROCESS_BEFORE_OUTPUT event

 The target State from NEEDS_CONFIRMATION to WDDOMODIFYVIEW

If launched at the wrong point in time the API will launch a CX_FPM_FLOORPLAN exception. This also means

that at event FLUSH and in the AppCC the state info is not available (or in case of several events within one

roundtrip it might be somehow outdated)

 DATA: lo_fpm TYPE REF TO if_fpm,

 ls_fpm_info TYPE fpm_s_runtime_info.

 lo_fpm = cl_fpm=>get_instance().

 ls_fpm_info = lo_fpm->get_runtime_info().

* check whether it is a OIF or GAF floorplan

 IF ls_fpm_info-floorplan =

 if_fpm_constants=>gc_floorplan-oif.

 DATA: lo_oif_info TYPE REF TO if_fpm_oif_info,

 ls_current_state TYPE fpm_s_oif_info,

 ls_target_state TYPE fpm_s_oif_info.

* now here comes the cast from type object to type

* if_fpm_oif_info.

 lo_oif_info ?= ls_fpm_info-floorplan_info.

 ls_current_state = lo_oif_info->get_current_state().

 ls_target_state = lo_oif_info->get_target_state().

 ENDIF.

 * now same thing for GAF...

 IF ls_fpm_info-floorplan =

 if_fpm_constants=>gc_floorplan-gaf.

 DATA: lo_gaf_info TYPE REF TO if_fpm_gaf_info,

 ls_current_state TYPE fpm_s_gaf_info,

 ls_target_state TYPE fpm_s_gaf_info.

 * now here comes the cast from type object to type if_fpm_gaf_info.

 lo_gaf_info ?= ls_fpm_info-floorplan_info.

 ls_current_state = lo_gaf_info->get_current_state().

 ls_target_state = lo_gaf_info->get_target_state().

 ENDIF.

Embedding an FPM Application

FPM was designed for building standalone applications. However, it is possible (with some restrictions) to
embed an FPM application within another Web Dynpro application.

To do this, proceed as follows:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 257

1. Create a usage for the component FPM_OIF_COMPONENT for OIF applications (or

FPM_GAF_COMPONENT for GAF applications) within the embedding component.

2. Embed the FPM_WINDOW Interface View within one of the views of the embedding
component.

3. Manually create the FPM component to be used (as you must provide the
configuration key of the floorplan component). This is best done as soon as
possible.

In most cases, this is the Web Dynpro DOINIT method of the embedding
application‟s component controller, as the sample code below shows:

method Web DynproDOINIT .

 data: lo_usage type ref to if_Web Dynpro_component_usage,

 ls_conf_key type Web Dynproy_config_key.

 lo_usage = Web Dynpro_this->Web Dynpro_cpuse_fpm_usage().

 if lo_usage->has_active_component() = abap_true.

 lo_usage->delete_component().

 endif.

 ls_conf_key-config_id = “ID configuration of FPM component”.

* recreate component using new configuration ID

 try.

 call method lo_usage->create_component

 EXPORTING

 component_name = 'FPM_OIF_COMPONENT'

 configuration_id = ls_conf_key.

 catch cx_Web Dynpro_runtime_api .

 endtry.

The following remarks relate to the above sample code:

 The configuration you pass is the configuration key of component

FPM_OIF_COMPONENT. You cannot pass the application‟s configuration key.

 The code example names the usage FPM_USAGE. If you name it differently, adjust

the following line: lo_usage = Web Dynpro_this->Web Dynpro_cpuse_fpm_usage(

).

 The example is for an OIF application; for a GAF application, replace

FPM_OIF_COMPONENT by FPM_GAF_COMPONENT.

 The delete_component() call is not necessary for simple static embedding.
However, you need it if you want to change the embedded FPM application in
the future.

Constraints

 FPM allows only one instance running at the same time within one internal
mode. Therefore, you cannot embed more than one FPM application at the
same time. It is possible to switch the embedded FPM application, replacing one
FPM application by another. You can assure this if you only use one Usage to

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 258

an FPM component within your application. This forces you to delete the old
FPM component before creating a new one.

 You cannot embed an FPM application within another FPM application.

 You cannot pass a configuration key for the IDR (header area). Therefore, the
header appears without configuration settings; these you can set
programmatically at runtime.

 You cannot pass application parameters for the FPM application, as the
application is now unknown to FPM.

FPM CHIP Integration

In principle, a floorplan component can be used as a CHIP: The wrapper component FPM_CHIP implements

the CHIP interface, and the OVP component directly implements it. However, this is not recommended since
a full floorplan UI is usually too large to be displayed in a CHIP. However, there is a need for displaying
single GUIBBs in a CHIP, for example, a Form UIBB. For this purpose FPM offers a single UIBB floorplan,
the UIBB CHIP Wrapper (UCW).

Structure of the UCW

The UCW only displays a single UIBB without an IDR or page header. However it is permitted to assign
nested (composite) UIBBs to the UCW (for example, Composite or Tabbed UIBBs or Search UIBBs (which
can embed a result List UIBB). The configuration is rather simple and must be maintained with the WD ABAP
default configuration editor.

Multi-Instantiability

As there may be several FPM-based CHIPs on a page, it must be possible to run multiple FPM instances in

parallel. In this case, the FPM factory to access the central FPM instance (reference to IF_FPM) can no

longer be used.

To achieve multi-instantiability, FPM offers the interface IF_FPM_MULTI_INSTANTIABLE, both on WD

ABAP and ABAP OO level. The interfaces have a method FPM_INITIALIZE which passes the local FPM

instance. With the other method, FPM_IS_MULTI_INSTANTIABLE, an FPM object can declare itself as

being multi-instantiable with a Boolean return value. An FPM object that returns a TRUE value commits itself

to obey the following rules:

1. Only the local FPM instance (IF_FPM) passed in FPM_INITIALIZE must be accessed.

CL_FPM_FACTORY=>GET_INSTANCE must not be accessed except for a simple

determination between runtime and design time.

2. The methods of CL_FPM_SERVICE_MANAGER are always called with the local FPM

instance.

3. Method CL_FPM_UIBB_API_FACTORY is always called with the local FPM instance.

4. Instances of CL_FPM_LPD_PROVIDER are always created with the local FPM instance.

5. The application logic itself must compatibly run with parallel FPM instances.

(Example: If FPM application objects use the same singleton pattern to access

shared transactional data, they should not declare themselves as being multi-

instantiable.)

An entire FPM instance is multi-instantiable as long as all its instantiated FPM application-specific objects
(that is, application controllers, freestyle UIBBs, GUIBB feeder classes, wire model connector classes and

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 259

wire model transaction handlers) declare themselves as being multi-instantiable too. GUIBBs are multi-
instantiable if, and only if, their feeder classes are multi-instantiable too. If there is more than one non multi-
instantiable FPM instance in one roll area, the FPM runtime raises a short dump.

To avoid conflicts due to multi-instantiation, it is recommended that new developments ensure multi-

instantiation of FPM objects by implementing IF_FPM_MULTI_INSTANTIABLE, accessing solely the FPM

instance passed in method FPM_INITIALIZE, and returning a TRUE value in

FPM_IS_MULTI_INSTANTIABLE. In particular, it is strongly recommended that UIBBs and feeder classes

developed for usage in the UCW be multi-instantiable.

Communication between FPM CHIPs

UIBBs and GUIBB feeder classes can optionally implement the WD interfaces IF_FPM_CHIP and

IF_FPM_CHIP_FEEDER respectively. Using the Web Dynpro CHIP API passed in method

FPM_CHIP_DO_INIT and CHIP_ INIT, it is possible to add dynamic inports. Inport events are

communicated in the UCW via the FPM event FPM_HANDLE_CHIP_INPORT, and the CHIP port event object

is attached as the event parameter with the key FPM_CHIP_PORT_EVENT.

Creating a CHIP for a Single UIBB

FPM applications are usually too large to be completely displayed inside a CHIP. However, you can use a
special FPM CHIP wrapper (known as the UCW - UIBB Chip Wrapper) - basically, a single UIBB floorplan -
which allows you to display just a single UIBB in a side panel or other Page Builder page.

Prerequisite:

You have created a UIBB (either a freestyle WD component or one based on a GUIBB component).

Procedure:

1. Create the UCW configuration (and add your existing UIBB to the UCW floorplan)

1. Create a configuration for WD component FPM_UCW_COMPONENT (found

in APB_FPM_CORE package)

 Choose the FPM_UCW_COMPONENT component and from the context-

menu, choose Create/Change Configuration.

 Enter a name for your new configuration in the Configuration ID field and

choose New

 Enter a description and package details in the dialog boxes that follow.

2. In the Component-Defined panel, select the ucwApplication row, and add a new

UIBB. A list of UIBB attributes appears.

3. Enter the following attributes for the UIBB you have created (see Prerequisites

above):

 Component: this is the original component that your existing configuration

is based on (e.g. FPM_LIST_UIBB)

 Window Name

 Configuration Name

4. Save your configuration.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 260

2. Create the CHIP (and refer it to the UCW configuration)

1. In APB_FPM_CORE package, choose the WD component FPM_CHIP.

2. In the context menu, choose Create, Web Dynpro CHIP.

3. Enter a name and package details in the dialog boxes that follow.

4. On the Properties tab, enter a display name and description and the following

information:

 Component - FPM_UCW_COMPONENT (overwrite the entry FPM_CHIP)

 Configuration Name - the name of the configuration you created in step 1

 Interface View - FPM_WINDOW

 Plug Name - DEFAULT

5. Save.

You have now created a CHIP containing a single UIBB. You can add it to a side panel or any other Page
Builder type page.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 261

Appendix I: Authorization Profiles

Every user interface element is defined and configured using its attributes. Your authorization profiles
determine whether you can carry out a configuration or enhancement of user interface elements.

The following two authorization profiles are of importance:

 S_DEVELOP
With the authorization profile for ABAP Workbench, you can make any and all
changes to a user interface developed with Web Dynpro ABAP.

 S_WDR_P13N
You can use this authorization profile to make changes to a user interface if the

S_DEVELOP authorization profile is not assigned to your user. It authorizes you to
configure a Web Dynpro application in administrator mode.

Appendix II: Building FPM Applications on BOL with NW703/WEBCUIF702

Using the feeder class concept it is possible to build generic adapters on generic business logic
encapsulations. Examples are BOL, BOPF or the ESF. Such adapters allow some reuse of generic feeder
classes by application development so that UI logic does not need to be re-implemented for each application.

FPM provides a rich adapter implementation on BOL which allows creating application UIs without a line of
code, purely consisting of Web Dynpro ABAP configurations.

The adapter objects can be found in package APB_FPM_BOL_CORE and test applications in

APB_FPM_BOL_TEST in the WEBCUIF software layer.

GUIBB Configuration with Generic BOL Feeder Class

Search GUIBB

You can create a Search GUIBB configuration by assigning the feeder class CL_GUIBB_BOL_DQUERY. In

the parameters dialog box (below), enter the BOL component and a dynamic query.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 262

After confirmation of the dialog box, a default configuration is provided which can be adjusted according to
your needs.

It is recommended not to configure result list attributes in the search configuration. Instead, assign a result
list GUIBB configuration which is configured on the result object of the dynamic query.

Form GUIBB

You can create a Form GUIBB configuration by assigning the feeder class CL_GUIBB_BOL_FORM. In the

parameters dialog box enter the BOL component and object (see following screenshot):

Set the flag “Editable” if you would like to have editable fields in your list. If you do not set the flag, the
objects will not be locked, and all fields will be statically read-only.

You can also add fields of related objects (by relation with non-multiple target cardinality) by specifying the
related objects in the “Join Structure” table. Press the “Insert Child” button to create a record, and use the
value help to select a related object (see following screenshot).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 263

Upon validation, it might be necessary to define a suffix for the joined objects attributes to avoid name
collisions (see following screenshot).

You can also create nested joins by selecting a row and choosing the “Insert Child” button. If no row is
selected, joins on the top levels (that is, directly related to the main BOL object) are created.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 264

You may assign a port identifier if you want to have separate outports for joined objects to access it directly
via FPM wiring.

After confirmation of the dialog box, a default configuration is provided which can be adjusted according to
your needs.

List GUIBB

You can create a List GUIBB configuration by assigning feeder class CL_GUIBB_BOL_LIST.

Set the flag “Editable” if you would like to have editable fields in your list. If you do not set the flag, the
objects will not be locked, and all fields will be statically read-only.

You can also join related BOL objects. However, for the list component, you should avoid configuring
unnecessarily excessive joins if large amounts of data are expected at runtime, as the join relation tree must
be processed for each row.

If the flag “Init Lead Sel” (Initial Lead Selection) is checked, the feeder always provides at least one row as
selected at runtime.

With the parameter “Fast Entry Mode” you can control whether there should be blank rows created if the list
UIBB is switched to edit mode in the OVP floorplan at runtime (see screenshot).

The default is “Not Active”, and you can activate the mode such that either single lines are inserted or blocks
of the visible row size of the table. These rows reflect non-sendable BOL entities which are only transferred
to sendable entities once an attribute is changed in the UI.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 265

If not changes occur in such a blank row, it will not be persisted when the transaction is saved. Note that this
functionality is only applicable if “Direct Create Requested” is not set in the GenIL metadata for the BOL
object and if it is not a root object. If the last existing blank row is filled with data and validated by the
standard list cell event (that is, if the user presses <ENTER> and the standard list cell event is not overruled
by configuration), then a new (block of) blank row(s) is created.

With active fast entry mode, the feeder class also provides an “Insert” action which creates a new (block of)
blank row(s) or navigates to an existing blank row.

Note that the fast entry mode is supported only with the new List ATS UIBB (FPM_LIST_UIBB_ATS).

Tree GUIBB

There is also a generic feeder class for the Tree UIBB. In contrast to the form, list or search feeder classes,
the tree feeder class cannot be used on any BOL object of a certain object type. Since BOL objects do not
have an intrinsic notion of a hierarchical structure in the BOL metadata, this feeder class relies on specific
GenIL implementations which are assumed to encode the tree structure by means of a specific “cyclic” BOL
relation, relating a BOL object to itself and carrying the “get tree child records” semantics. This relation is
maintained as a mandatory feeder parameter, “Relation Name”.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 266

The assumption is that the feeder class only receives the tree‟s top level records as entities from the wiring
at runtime. For all these top level entities the feeder recursively builds up the tree, retrieving the tree‟s lower
level records as the child entities provided by the cyclic BOL relation.

The field which carries the text for the master column can be specified by the feeder parameter “Master
Column Text Reference”. The initial tree expansion level can be specified with the field “Initial Expansion”
with the following values:

 0

Not even the top level entities are initially expanded

 1

Only the top level entities are initially expanded

 2

Only the top level entities and its direct children are initially expanded, and so on for
larger integers.

 -1

The tree is initially expanded until no child entities are found. This “infinite”
expansion must, however, be chosen with care since a cycle (for example, if an
entity is related to its own child) then leads to infinite loops at runtime.

Floorplan Configuration

For the generic FPM BOL adapter it is necessary to define settings on the floorplan level, in particular the
transaction handling and the dependencies between UI components (“Wiring”) must be defined.

BOL-Specific Settings

In the floorplan configuration it is necessary to assign the FPM BOL transaction handler class,

CL_FPM_BOL_TRANSACTION, as the wire-model transaction handler. This is done in the wire schema and

provides transaction integration of your FPM BOL application, taking care of transaction action handling such
as “Save” and “Cancel” global message handling (see screenshot).

Though functionally not necessary, it is recommended to maintain the application area in the General
Settings with „FPM_BOL‟.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 267

With this classification, FLUID will propose the standard BOL feeder classes whenever you create a UIBB
configuration by drilling down from a floorplan, tabbed or composite configuration.

Wiring

You can maintain the wires in the Wire Schema table. However, it is easier to do it graphically, using the
Graphical Wire Editor (button on the Wire Schema toolbar). Drag the UIBBs you want to connect with wires
from the repository into the work area. There, you can draw a wire connection by dragging from an outport of
the source UIBB and dropping onto the target UIBB (see screenshot).

A dialog box appears which prompts you for the connector class. Choose one of the following:

 Choose CL_FPM_CONNECTOR_BOL_IDENTITY BOL if no logic has to be processed

between the UIBBs (for example, between a search and a result list or between a

master list and its detail form).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 268

 Choose CL_FPM_CONNECTOR_BOL_RELATION BOL if a BOL relation should be processed

between the UIBBs. In this case, you can select from the dropdown list the BOL

relations that exist between the BOL objects assigned to the source UIBB‟s outport

and the target UIBB. If only one relation exists, it is preselected.

Leave the default value for the creation mode and confirm the dialog box. This way, you can build up the
data flow of your application.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 269

OVP Application with Ex-place Navigation

According to the UX guidelines 2.0, navigation from a search page to the main application should be ex-
place, that is, a new window shall be opened. Technically, this is realized in a single OVP configuration; the
search page is an initial screen with a search UIBB and a result list UIBB. The result list contains columns
with links.

There is always a primary link column which restarts the OVP for the main search object in a mode such that
the search page is executed with parameters in the background. There may also be secondary links which
start OVP applications.

The use-case is that the search result is a BOL root object. The primary link needs to be configured as a link

to action and the event FPM_NAVIGATE must be assigned. To this event, the feeder attaches an event

parameter structure of type FPM_S_EXTERNAL_NAVIGATION_INFO or, in the case that the root object key

structure contains many attributes, a larger structure including FPM_S_EXTERNAL_NAVIGATION_INFO. The

attributes “Role”, “Instance ID” and “Application Alias” specify a launchpad entry for the application. This is
not mandatory for the primary link since the FPM is able to dynamically create a launchpad navigation at
runtime for restarting the current application. By default, the value of the selected link field is extracted into a
URL parameter, and in the restarted session the value is filled to a search attribute with the same name. For
instance, if you have a search page for sales orders and you click on a sales order link “00004711” with

technical field name SO_ID, then the application is started in a new window where the search is maintained

with SO_ID = „0004711‟. If the technical field name of the result list column does not match the technical field

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 270

name of the search attribute, then you need to maintain a launchpad customizing with a URL parameter
mapping and reference this launchpad entry in the event parameters for the primary link too.

With the attribute “Source Attribute” a column can be specified which carries the identifying attribute if it is not
the link column. Choose “Execute Search and Leave” for the Processing Mode so that the search page will
be executed in dark mode in the new window. Choose the Edit Mode state in which the application shall be
started (usually this is read-only mode).

With “Page ID” you can specify a specific page as a start page for the application. This is only necessary if
the search page initial screen is not the only initial screen and not flagged as a default page.

If you want to support a create-scenario for your application based on a BOL root object, you need to add
another initial screen to your application. It should essentially be a copy of the search page, that is,
containing the same assignment of the Search UIBB with the result list UIBB, but these UIBBs are flagged as
“Technical: Hidden but processed in event loop”.

In addition you need to configure a Form UIBB based on feeder class

CL_GUIBB_BOL_ROOT_PARAM_CREATE and parameterized on the BOL root object. Maintain the feeder

parameter “Execution Mode” with “On FPM initial screen‟s start-button event” so that, at runtime, the object
creation is processed when the Continue button is pressed.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 271

In the OVP configuration, the search page should not be flagged as the default initial page since there is an
alternative initial page. For the wiring, the 'creation' Form UIBB must be on top of the Search UIBB.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 272

In the result list toolbar, you need to add a “New” button which also has to be assigned to the

FPM_NAVIGATE event. The “Processing Mode” should be “Create”, the “Edit” mode should be selected, and

the “Page ID” shall be maintained with the ID of the page carrying the create Form UIBB.

Having done this, the new button should open a new window displaying the initial screen with the creation
Form UIBB, and once you enter create parameters and press 'Continue', you enter the overview page where
you can further edit the new object.

Break-out Scenarios

With the FPM BOL adapter it is possible to create running applications without a line of code, that is, based
purely on application-specific Web Dynpro ABAP configuration objects and reusing generic code such as
feeder, connector and transaction handler classes. In application development it may, however, be
necessary to add application-specific UI code. There are multiple options to do this. Most of them rely on the
OO inheritance concept: the generic classes are modularized in a fine granular way, offering a variety of
protected methods which can be redefined by application classes.

Feeder Class Redefinition

There are many options for redefining the standard feeder classes. The following example illustrates this.
Suppose that we want to derive a specialized list feeder which has the following features:

1. It is specialized to a specific BOL object so that it cannot be parameterized on other

BOL objects.

2. It does not allow joined objects.

3. It assigns a value help for a specific field as OVS.

4. It provides a specific set of values for the OVS.

To realize the first feature, we redefine method IF_FPM_GUIBB~GET_PARAMETER_LIST and remove the

feeder parameters for the BOL component and object (see following screenshot).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 273

We also set this data hard-coded by redefining method EVALUATE_PARAMETERS.

The field catalog is now based on the EPM Purchase Order BOL object. The second feature is realized by
returning ABAP_FALSE in a redefinition of IS_JOIN_ENABLED.

As a result, we can no longer assign different BOL objects in the GUIBB configuration.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 274

The third feature is achieved by returning ABAP_TRUE in a redefinition of IS_OVS_ATTRIBUTE for a

specific field.

Finally, we build up an OVS result list in a redefinition of OVS_HANDLE_PHASE_2 where we fill the output

table referenced by the exporting parameter ER_OUTPUT.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 275

This is enough to set up an application-defined value help.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 276

Connector Class Redefinition

In special cases it may also be necessary to redefine methods of the standard FPM BOL connector classes.

You can also derive directly from the abstract class CL_FPM_CONNECTOR_BOL_BASE.

Transaction-Handler Class Redefinition

In order to implement deviations of the transactional behavior of the FPM BOL adapter, it is also possible to

derive from the standard transaction handler CL_FPM_BOL_TRANSACTION. For instance, you can redefine

method EVALUATE_SAVE_INTERNAL in order to issue specific success messages upon successful save.

Freestyle UIBBs

The classes CL_BOL_SAMPLE_FREESTYLE_ASSIST and CL_BOL_SAMPLE_FREE_ASSIST_TAB can be

directly used or redefined as assistance classes of freestyle UI building blocks on BOL objects. The
implementation assumes that there is a context node containing (a subset of) the BOL object‟s attributes. It is

required to pass it in method WDDOINIT of the component controller.

The interface GET_MODEL_API must simply return the assistance class.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 277

The interface methods FLUSH, PROCESS_BEFORE_OUTPUT and PROCESS_EVENT need simply to delegate

to the assistance class, for example:

The components FPM_BOL_SAMPLE_FREESTYLE and FPM_BOL_SAMPLE_FREE_TAB may be conferred as

samples.

Create your WD component as a UI building block according to the FPM standard. The WD component

needs to implement interface IF_FPM_UIBB_MODEL.

The method IF_FPM_FEEDER_MODEL~GET_NAMESPACE has to return the value „BOL‟.

The method IF_FPM_FEEDER_MODEL~SET_CONNECTOR is used to set the connector instance which serves

as a data source. It should be kept in a local object variable of 'type ref to IF_FPM_CONNECTOR'.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 278

At runtime, the connector method GET_OUTPUT should be called on BEFORE_PROCESS_BEFORE_OUTPUT

so that the actual data can be displayed. This can be implemented, for example, in a public method of the
assistance class.

Now the collection (type ref to IF_BOL_ENTITY_COL) contains the current data and can be used to fill the

WD context bound to the view elements.

The method IF_FPM_FEEDER_MODEL~GET_INPORT_KEY has to return the object key consisting of the

component name and the object name relevant for the data retrieval.

The method IF_FPM_FEEDER_MODEL~GET_OUTPORTS needs to provide the definition of the outports. Each

port consists of a port type (Collection, Selection or Lead Selection), a freely chosen identifier, a descriptive
text and the object key. If the freestyle component shall pass data to dependent UI building blocks, the
corresponding outports have to be defined here.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 279

If the feeder class model has outports, the method IF_FPM_FEEDER_MODEL~GET_OUTPORT_DATA is used

to access the outport data. This has to be a BOL collection (type ref to IF_BOL_ENTITY_COL).

Application Controllers

The FPM BOL adapter makes use of the wire model transaction-handler and does not need an application
controller. If necessary, an application can assign its own application controller. It is possible for an
application controller to receive UI information from the wiring if a WD ABAP application controller

implements IF_FPM_UIBB_MODEL and provides a feeder model, or if an ABAP OO application controller

implements IF_FPM_UIBB_MODEL (the feeder model must return the namespace „BOL‟).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 280

Special Topics

FPM BOL CHIP Integration

The standard BOL feeder classes define tags for each attribute. The tag name is by default the BOL attribute

name. This can be changed by redefining method GET_FIELD_DESCRIPTION. As is standard, the tagging

for a field can be activated in the attribute view in the GUIBB configuration in FLUID.

All standard model classes, in particular the feeder classes, are ready for multi-instantiability and implement

the chip feeder interface IF_FPM_CHIP_FEEDER. A special form feeder class

CL_GUIBB_BOL_FORM_CHIP_ENTRY is provided which can be configured on (dynamic) queries. This class

reacts to tagging port events with a tag name coincided with a (dynamic) query attribute. Deviating names

can be defined by redefining method MAP_QUERY_PARAM_TO_ATTR. It executes the query at each such

inport event and, from the result collection – which ideally contains a single entity if the tagging is defined in a
meaningful way – the first entity is displayed.

Example: If you have a query on Products, and there is a query attribute for the unique key field
PRODUCT_ID, then, when an inport is received for a tag PRODUCT_ID with value „4711‟, the form displays
the product data of the product with ID „4711‟. This may be realized, for example, by assigning the Form
UIBB in a UCW configuration which, in turn, is assigned in a WD CHIP. The CHIP may be assigned in a side
panel configuration.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 281

Appendix III: Guidelines for Edit Scenarios for List ATS UIBB

Objectives

The new List ATS UIBB provides, with the help of ABAP Table Services (ATS), sorting and filtering services.
These services do not work directly on the data table of the application; they copy the required information
into their own and local structures. They compute and manage the mapping between rows of the data table
(source) and rows shown on the UI (result). Therefore, the feeder class cannot presuppose any connection
between the data table and the UI unless the execution of services is forbidden.

The following questions arise if edit scenarios are to be realized:

 How do I handle a row on the UI if the value of a sorted column is changed and the new value is not
in the sort order?

 How do I handle a row on the UI if the value of a filtered column is changed and the new value does
not fulfill the filter criteria?

 Where should a row on the UI be displayed which is inserted by the feeder class?

The desired behavior of the UI is outlined in the UI Guidelines 2.0. In brief, these guidelines state that for edit
scenarios the UI must be stable after values are changed. This can be summarized as follows:

 If values in a row are changed, the row maintains its position on the UI independent of the kind of
change.

 If rows are inserted into the data table by feeder class, these rows appear on the UI after the last
selected row. Additionally, the order of the rows on the UI is not changed.

 If rows are deleted from the data table by feeder class, these rows are removed from the UI.
Additionally, the order of rows on the UI is not changed.

Therefore, after changes to values (on the UI or by feeder class) or after deletion or insertion of rows (by
feeder class), the services (sorting and filtering) should not be executed. However, these services manage
the mapping between the data table and the UI. Therefore, the services must be informed about changes to
the data table in order to actualize the mapping.

This document describes how to realize edit scenarios which allow the usage of services (sorting and
filtering) and which conform to the current UI guidelines (v2.0).

Prerequisites

 An application works in roundtrips (phase model of FPM). The feeder class method GET_DATA is
called once per roundtrip. The data is shown (and perhaps changed) on the UI between two calls of
GET_DATA.

 The insertion and deletion of rows in the data table is only made in the feeder class method
GET_DATA. Therefore, between two calls of this method the number of rows in the data table is
constant.

 Changes to values in any rows are possible (in method GET_DATA and on UI).

Note:

The following scenarios and programming examples must be extended if changes to the data table are made

in the feeder class method FLUSH (in fact forbidden but possible).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 282

Change Log

A new change log has been created which contains all changes needed for actualization of internal data of
ATS. The starting point is the before image of the data table (on entry of method GET_DATA) and the end
point is the after image of the data table (after leaving the method GET_DATA). The editor change log
describes the transition from the before to after image.

The change log must be created by the application and then handed over to ATS. The change log is
described by the interface IF_SALV_ITAB_CHANGE_LOG. Its methods are described in the following table
and screenshot:

Method Description

get_index_map Gets the indexes of deleted rows (before image), the indexes of
inserted rows (after image), the mapping of rows between the
before and after image and the indexes of rows (before image)
which must be moved to an insert position

get_columns_modified Gets the names of columns in which values are changed

get_rows_modified Gets the indexes of rows (after image) in which values are
changed

data_is_new This is TRUE if the data is completely new and no connection
between the before and after image exists.

Note

 See also the interface documentation in the system

 The methods GET_COLUMNS_MODIFIED and GET_ROWS_MODIFIED are optional. The
change log does not have to supply this information. But the ATS works faster if this information
is available.

 Row numbers are always described as ranges in the change log. If a range consists of only one
row, the lower and the upper value are the same.

 The mapping of rows (ET_MOVED) describes how to map ranges of rows of the before image to
ranges of rows of the after image. The range in the after image is described only by the lower
value, as the following example demonstrates:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 283

((3, 5), 7) means that rows 3, 4 and 5 of the before image are mapped to rows 7, 8 and 9 of the
after image.

 Entries in table ET_MOVED of method GET_INDEX_MAP are only needed for rows which
change their position in the data table between the before and after image. Rows which do not
change their position do not have to be listed in this table.

Application Scenarios

The creation of a change log by feeder classes is supported by special classes of ATS. Dependent on this
support, there are different application scenarios:

 Unique Key Mode
The rows of the data table have a unique key. The key can consist of an arbitrary number of
fields. You can edit the values of the key but the uniqueness of the key must always be
guaranteed for the whole data table. Additionally, arbitrary operations with the table are allowed.

 Stable Line Mode
The application does not change the order of rows in the data table but insert and delete
operations are allowed.

In the above scenarios, the application can delegate the creation of change logs to helper
classes of ATS (see below). The application must guarantee special conditions (agreements).
Violation of these agreements leads to erroneous mapping between the before and after image
and, therefore, a correct mapping cannot be calculated in all cases. Therefore, conformity with
the current UI guidelines is not guaranteed. However, no data will be lost.

 Own Delta Handling
There is no support by ATS; the application is responsible for the creation of a correct change
log.

 No Delta Handling
There is no delta handling; after changes to data the services (sorting and filtering) are always
executed. This is the behavior of the 'old' List UIBB. This behavior does not conform to current
UI guidelines.

Note

The existing feeder classes can be used furthermore with the new List ATS UIBB without changes. This
corresponds to the 'no delta handling' scenario.

Extension of Feeder Interface

The signature of the method GET_DATA of the feeder interface is extended with an exporting parameter.
This parameter must reference an object which implements the interface for the editor change log.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 284

Together with the existing export parameter EV_DATA_CHANGED the following situations are possible:

EV_DATA_CHANGED eo_itab_change_log Meaning

FALSE is not observed Data not changed; change log is not
observed

 Services are not executed

TRUE initial Data changed; change log not calculated
 Services are executed at new

 not initial :
data_is_new() = true

Data changed; change log calculated but
data_new is set
 Services are executed at new

 not initial :

data_is_new() = false

Data changed; change log calculated
(access via get_index_map)
 Services are not executed

Unique Key Mode

This section describes what an application must do to realize the scenario Unique Key Mode.

To-Dos for Application

 The flag EV_DATA_CHANGED must always be set if changes to data are made inside the method
GET_DATA.

o The flag will not be set if changes are made by UI and accepted by the application.
o The flag must also be set if only the order of the rows is changed (for example, by sorting the

table).

 The uniqueness of the key must always be ensured.
o Applies also for changes of keys on the UI.
o Applies also for insert operations, that is, new inserted rows should already have a unique key.

 For the creation of the editor change log, the class CL_SALV_ITAB_EDITOR_KEY_MODE can be used.
o See below for programming examples
o See also the class documentation in the system

A violation of uniqueness results in erroneous mapping between rows of the before and after images.
However, no data is lost.

The methods for class CL_SALV_ITAB_EDITOR_KEY_MODE are described in the following table:

Method Description

Log_new_data Resets the change log (DATA_IS_NEW returns TRUE)

START_RECORDING Starts recording of change log; an existing change log is deleted

KEY_CHANGED Notifies that a key was changed

STOP_RECORDING Stops recording of change log

move_to_insert_position Marks a row for moving to an insert position

Notes

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 285

 The constructor of this class has the following parameters:

o IT_KEY_NAME = names of key fields

o I_UI_CAN_CHANGE_KEY_FIELDS = flag indicating whether changes of key fields are possible by UI

If no such changes are possible, a quicker calculation of the change log is possible.

 The start of recording with the method START_RECORD is absolutely necessary. The actual state of the
data table must be handed over as a parameter at the start.

 The calculation of the change log is expensive. It takes place either during a call of method
STOP_RECORDING or, if the method STOP_RECORDING is not called before, during a call of 'get' methods of
interface IF_SALV_ITAB_CHANGE_LOG (see above).

 The method STOP_RECORDING should be used to stop the recording; further accesses to the change log
(using 'get' methods) are realized more quickly as the change log does not have to be calculated for
each access.
But in principle the method STOP_RECORDING is not required.

 The call of method START_RECORDING deletes an existing change log. Therefore, the method
START_RECORDING may be called once within the method GET_DATA.

 The notification of key changes is essential for the calculation of a correct change log. If a key is
changed and no notification is made, it is assumed that any row is deleted and any row is inserted. This
is different behavior to changing a key (no new row, and row is moved).

 If you want to notify that new data exists using the change log, you can use the method
LOG_NEW_DATA (see section 'Extension of Feeder Interface').

Moving of Rows

As described above, the application knows no connection between the data table and the UI; it does not
affect the order in which the rows of the data table are displayed on the UI. In certain situations, it is
necessary to move rows around on the UI. For example, when implementing drag-and-drop for rows, it must
be possible to mark those rows in the data table which have to be moved in the UI to an insert position. For
this reason, the class CL_SALV_ITAB_EDITOR_KEY_MODE has the method MOVE_TO_INSERT_POSITION. This
method can be passed a line that appears in the UI at the insertion position. Several calls to this method with
different rows are possible. These rows are shifted simultaneously. Changes to the data table are not
necessary.

Programming Examples

The following programming example shows the principal construction of method GET_DATA if the class
CL_SALV_ITAB_EDITOR_KEY_MODE is used for creating the change log. The application must start and stop the
recording, must notify key changes and must export the change log using the exporting parameter.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 286

Notes

 The constructor and the methods START_RECORDING and KEY_CHANGED can throw exceptions. In the
programming example above, the handling of exceptions has been waived.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 287

Stable Line Order Mode

This section describes what an application must do to realize the scenario Stable Line Order Mode.

To-Dos for Application

 The flag EV_DATA_CHANGED must always be set if changes on data are made inside the method
GET_DATA.

o The flag will not be set if changes are made by UI and accepted by application.

 The order of rows in the data table must not be changed.
o Sorting is forbidden.
o Do not call routines (methods, function modules) which change the order of rows in the table.
o Insert and delete operations are possible. However, no mapping is detected if a row is deleted

and then inserted.

 The class CL_SALV_ITAB_EDITOR_LINE_MODE can be used for creating the editor change log
o See programming examples below
o See also class documentation in the system.
o This class contains methods for all table operations (except for LOOP and READ) there are

methods of this class.
o It is possible to execute all table operations themselves and only use the log functions of this

class

Notes

 Changes in row order lead to erroneous mapping between the before and after images. However, no
data is lost.

 If, in certain situations (for example during sorting), there is a need to change the order of table rows, it
should proceed as if there is new data (run method RESET).

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 288

The methods for class CL_SALV_ITAB_EDITOR_LINE_MODE are described in the following table:

Method Description

START_RECORDING Starts recording of change log; an existing change log is deleted

SET_NEW_DATA Gets new data and resets the change log (DATA_IS_NEW returns
TRUE)

 Table operations with recording

APPEND_... Substitute for ABAP statement APPEND (3 variants)

CLEAR_TABLE Substitute for ABAP statement CLEAR

COLLECT_LINE Substitute for ABAP statement COLLECT

DELETE_... Substitute for ABAP statement DELETE (2 variants)

INSERT_... Substitute for ABAP statement INSERT (3 variants)

MODIFY_LINE Substitute for ABAP statement MODIFY

MOVE_TO_INSERT_POSITION Marks a row for moving to an insert position

Only recording of table operations

LOG_APPEND_ROWS Records appended rows

LOG_DELETE_ROWS Records deleted rows

LOG_INSERT_ROWS Records inserted rows

LET_NEW_DATA Resets the change log (data_is_new returns true)

MOVE_TO_INSERT_POSITION Marks a line for moving to an insert position

Notes

 The start of recording with the method START_RECORD is absolutely necessary. During the start the actual
state of the data table must be handed over as parameter. A method for stopping the recording is not
needed and does not exist.

 The call of method START_RECORDING deletes an existing change log. Therefore, the method
START_RECORDING may be called once within the method GET_DATA.

 The method LOG_NEW_DATA can be used if you want to notify using the change log that
new data exists (see section 'Extension of Feeder Interface').

 This class provides a complete set of operations to change a table. Reading operations (READ, LOOP)
must be executed directly using ABAP statements.

 All operations that change a table can be executed as ABAP statements too if, after each statement, the
corresponding recording method LOG_... is called. However, it is recommended that changes to a table
are always made with the appropriate methods for such table operations.

Moving of Rows

As described above, the application knows no connection between the data table and the UI, that is, it does
not affect the order in which the rows of the data table are displayed on the UI. In certain situations it is
necessary to move rows around the UI. For example, when implementing the drag-and-drop of rows, it must
be possible to mark those rows in the data table which have to be moved in the UI to an insert position.

For this reason, the class CL_SALV_ITAB_EDITOR_LINE_MODE has the methods MOVE_TO_INSERT_POSITION and
LOG_MOVE_TO_INSERT_POSITION. These methods can be passed a row number that appears in the UI at the
insert position. Several calls to these methods with different row numbers are possible. These rows are

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 289

shifted simultaneously. Changes to the data table are not necessary, that is, it is not necessary to move
these rows inside the data table.

Programming Examples

The following code demonstrates how to replace ABAP statements for changing table content using calls of
methods of class CL_SALV_ITAB_EDITOR_LINE_MODE:

Notes

 If the corresponding ABAP statement returns any system fields (SY-...), the method has an exporting or
returning parameter with the value of this system field (see the signatures of the methods).

 Regarding the validity of indexes, the same rules apply as for the corresponding ABAP statements.
Therefore, invalid values for insert indexes, for example, lead to dumps as they would in the
corresponding ABAP statement.

 Most of the methods above can throw exceptions. The handling of exceptions has been waived in the
example code above.

The following programming example shows the principal construction of the method GET_DATA if the class
CL_SALV_ITAB_EDITOR_LINE_MODE is used for creating the change log. The application uses the methods for
table operations (this is demonstrated by the deletion and insertion of a line in this example):

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 290

Note that the handling of exceptions is waived in the above example.

In the following programming example the table operations are made by ABAP statements and then
recorded by recording methods:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 291

Note that the handling of exceptions is waived in the example above.

Both the programming examples above have a drawback; table operations using ABAP statements can be
mixed with calls of methods for table operations. This increases the occurrence of erroneous change logs.
The following example avoids this problem and forces you to use methods for table operations in all cases:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 292

In the above example the entire code is moved to method GET_DATA_INTERNAL. The data table is transferred
to this method using an importing parameter. Therefore, inside the method GET_DATA_INTERNAL, ABAP
statements for changing the table are no longer allowed. All changes relate to calls of editor methods.

Own Delta Handling

This section describes what an application must do to realize the scenario Own Delta Handling. The
application is responsible themselves for creation of change log.

To-Dos for Application

 The flag EV_DATA_CHANGED must always be set if changes to data are made inside the method
GET_DATA.

o The flag will not be set if changes are made by UI and accepted by the application.

 If the data table is changed, a change log must be created. The recording methods (LOG_...) of class
CL_SALV_ITAB_EDITOR_LINE_MODE may be used. This corresponds with the second example of the
preceding section.

No Delta Handling

This case describes the behavior of the previous ('old') List UIBB.

To-Dos for Application

 The flag EV_DATA_CHANGED must always be set if changes to data are made inside the method
GET_DATA.

o The flag will not be set if changes are made by UI and accepted by application.

Note that the existing feeder classes can be used with the new List ATS UIBB without changes. But, of
course, the behavior during edit scenarios does not conform to the current UI guidelines under certain
conditions.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 293

Appendix IV: Multi-Value Fields

How to Use a Multi-Value Field

With a multi-value field, a user has the opportunity to define a user-specific input field containing multiple
input data.

The different input values are entered in a dialog box. This data is formatted by the FPM and is displayed on
the search screen.

The screenshot below details a search screen at runtime, detailing the multi-value elements:

The application defines the dialog box which the users must use to enter the multi-value data. An example of
such a dialog box is shown below:

In order to use such a multi-value (MV) field, you must perform the following steps:

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 294

Example in R/3- system:

Web Dynpro application configuration: FPM_TEST_ADV_SEARCH_CONF

Component configuration of Search UIBB: FPM_TEST_ADVANCED

Web Dynpro component of dialog box: FPM_TEST_MULTIPLE_DIALOG

1. In method GET_DEFINITION, define in the field catalog a field with type string (in our

example s_business_partner-region).

2. In method GET_DEFINITION, enter the attribute FIELD_DESCRIPTION-

multi_value_struct for the MV criteria. This field is of type CL_ABAP_STRUCTDESCR.
The components of this object are the input values of the dialog box. The simplest
way to provide these fields is to create a flat DDIC structure containing the fields

and then get it via FIELD_DESCRIPTION-MULTI_VALUE_STRUCT ?=

CL_ABAP_STRUCTDESCR=>DESCRIBE_BY_DATA(…)

If the MV field is to read-only, set the parameter ES_OPTIONS-
SET_MULTI_ATTR_TE_READ_ONLY = ABAP_TRUE.

3. Create a Web Dynpro component for the dialog box where the user can enter the

data for the multi-value field. In our example, FPM_TEST_MULTIPLE_DIALOG. The

interface IF_FPM_UI_BUILDING_BLOCK must be implemented. Design the view with
your input fields.

4. In the component controller of the WD component, define the context with your
input fields.

5. Map the context from the component controller to the view context.

6. Open the FPM component configuration (in our example FPM_TEST_ADV_COMP).
Open the Navigation panel. Add a dialog box. The name of the dialog box must be
concatenated in the following way:
FPM_SEARCH_DIALOG_<config_key-config_id>_<name of MV attribute>

In our example, this name is: FPM_SEARCH_DIALOG_FPM_TEST_ADVANCED_REGION.

If you do not want to use this concatenated name for the dialog box ID, you can set

the parameter ES_OPTIONS-USE_STD_DIALOG_MULTI_EDIT = ABPA_TRUE in the feeder

class method GET_DEFINITION. Then you can use the dialog box ID

FPM_SEARCH_STD_DIALOG instead of the concatenated ID.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 295

7. When you close the dialog box, you must raise the FPM event

IF_FPM_CONSTANTS=>GC_EVENT-CLOSE_DIALOG. In our example, this is done in the

DIALOG_VIEW in the method ONACTIONSEND_CLOSE.

8. You must implement the method PROCESS_EVENT in the component controller. Here

you can react on the FPM event IF_FPM_CONSTANTS=>GC_EVENT-CLOSE_DIALOG. You

must create and raise the FPM event IF_FPM_CONSTANTS=>GC_EVENT-

MULTIPLE_VALUE. With this event, you pass the multi-value data entered in the
dialog box to the Search UIBB component.

You must set the following values for this event:

lo_event->mo_event_data->

set_value(iv_key = if_fpm_guibb_search=>event_param_multi_name

 iv_value = <name of MV attribute>).

 lo_event->mo_event_data->

set_value(iv_key = if_fpm_guibb_search=>event_param_multi_struct

 iv_value = <data entered for MV attribute>.

In the search component, the values passed by this event are displayed
automatically formatted. The separation between the two input fields from the

dialog box is defined in ES_OPTIONS-MULTI_ATTR_SEPERATOR.
9. There is the option that it is not the search component that formats the multi-value

string, but the application; the application passes a formatted multi-value string
table. This string table will be displayed in the search component. The application
passes this string table as an event parameter

(IF_FPM_GUIBB_SEARCH=>EVENT_PARAM_MULTI_STRING_TABLE) of the event

IF_FPM_CONSTANTS=>GC_EVENT-MULTIPLE_VALUE. This can be done in the component

controller in method PROCESS_EVENT:

lo_event->mo_event_data->set_value(

EXPORTING iv_key = if_fpm_guibb_search=>event_param_multi_string_table

 iv_value = <name of string table with formatted values>).

10. You must check for the FPM event IF_FPM_CONSTANTS=>GC_EVENT-OPEN_DIALOG in

the method PROCESS_BEFORE_OUTPUT of the component controller of your MV WD
component. The event parameters contain the input of the multi-value field in the
search component. You need this data in order to fill the input fields of your dialog
box correctly. Reading of the event parameters is done in the following way:

io_event->mo_event_data->get_value(

 EXPORTING iv_key = if_fpm_guibb_search=>event_param_multi_name

 IMPORTING ev_value = <name of multi value attribute>).

io_event->mo_event_data-> get_value(

 EXPORTING iv_key = if_fpm_guibb_search=>event_param_multi_struct

 IMPORTING er_value = <values of multi-value attribute>).

In our example this is done in the method PROCESS_BEFORE_OUTPUT of the

component controller in the WD application FPM_TEST_MULTIPLE_DIALOG.

 Error! No text of specified style in document.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BA - boc.sap.com | UAC - uac.sap.com

© 2011 SAP AG 296

